- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
Primary terms
-
faults (1)
-
folds (1)
-
tectonics (1)
-
Calibration and validation of reservoir models: the importance of high resolution, quantitative outcrop analogues
Abstract Rapidly developing methods of digital acquisition, visualization and analysis allow highly detailed outcrop models to be constructed, and used as analogues to provide quantitative information about sedimentological and structural architectures from reservoir to subseismic scales of observation. Terrestrial laser-scanning (lidar) and high precision Real-Time Kinematic GPS are key survey technologies for data acquisition. 3D visualization facilities are used when analysing the outcrop data. Analysis of laser-scan data involves picking of the point-cloud to derive interpolated stratigraphic and structural surfaces. The resultant data can be used as input for object-based models, or can be cellularized and upscaled for use in grid-based reservoir modelling. Outcrop data can also be used to calibrate numerical models of geological processes such as the development and growth of folds, and the initiation and propagation of fractures.
Digital field data acquisition: towards increased quantification of uncertainty during geological mapping
Abstract Traditional methods of geological mapping were developed within the inherent constraints imposed by paper-based publishing. These methods are still dominant in the earth sciences, despite recent advances in digital technology in a range of fields, including global-positioning systems, geographical information systems (GIS), 3-D computer visualization, portable computer devices, knowledge engineering and artificial intelligence. Digital geological mapping has the potential to overcome some serious limitations of paper-based maps. Although geological maps are usually highly interpretive, traditional maps show little of the raw field data collected or the reasoning used during interpretation. In geological mapping, interpretation typically relies on the prior experience and prior knowledge of the mapper, but this input is rarely published explicitly with the final printed map. Digital mapping techniques open up new possibilities for publishing maps digitally in a GIS format, together with spatially referenced raw field data, field photographs, explanation of the interpretation process and background information relevant to the map area. Having field data in a digital form allows the use of interpolation methods based on fuzzy logic to quantify some types of uncertainty associated with subsurface interpretation, and the use of this uncertainty to evaluate the validity of competing interpretations.