- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Seismic characterization of carbonate platforms and reservoirs: an introduction and review
Abstract Improved seismic data quality in the last 10–15 years, innovative use of seismic attribute combinations, extraction of geomorphological data and new quantitative techniques have significantly enhanced understanding of ancient carbonate platforms and processes. 3D data have become a fundamental toolkit for mapping carbonate depositional and diagenetic facies, and associated flow units and barriers, giving a unique perspective on how their relationships changed through time in response to tectonic, oceanographic and climatic forcing. Sophisticated predictions of lithology and porosity are being made from seismic data in reservoirs with good borehole log and core calibration for detailed integration with structural, palaeoenvironmental and sequence stratigraphic interpretations. Geologists can now characterize entire carbonate platform systems and their large-scale evolution in time and space, including systems with few outcrop analogues such as the Lower Cretaceous Central Atlantic ‘pre-salt’ carbonates. The papers introduced in this review illustrate opportunities, workflows and potential pitfalls of modern carbonate seismic interpretation. They demonstrate advances in knowledge of carbonate systems achieved when geologists and geophysicists collaborate and innovate to maximize the value of seismic data from acquisition, through processing to interpretation. Future trends and developments, including machine learning and the significance of the energy transition, are briefly discussed.
Abstract Understanding and predicting architecture and facies distribution of syn-rift carbonates is challenging owing to complex control by climatic, tectonic, biological and sedimentological factors. CarboCAT is a three-dimensional stratigraphic forward model of carbonate and mixed carbonate–siliciclastic systems that has recently been developed to include processes controlling carbonate platform development in extensional settings. CarboCAT has been used here to perform numerical experiment investigations of the various processes and factors hypothesized to control syn-rift carbonates sedimentation. Models representing three tectonic scenarios have been calculated and investigated, to characterize facies distribution and architecture of carbonate platforms developed on half-grabens, horsts and transfer zones. For each forward stratigraphic model, forward seismic models have also been calculated, so that modelled stratal geometries presented as synthetic seismic images can be directly compared with seismic images of subsurface carbonate strata. The CarboCAT models and synthetic seismic images corroborate many elements of the existing syn-rift and early-post-rift conceptual model, but also expand these models by describing how platform architecture and spatial facies distributions vary along-strike between hanging-wall, footwall and transfer zone settings. Synthetic seismic images show how platform margins may appear in seismic data, showing significant differences in overall seismic character between prograding and backstepping stacking patterns.