- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Europe
-
Southern Europe
-
Italy (1)
-
-
-
Mediterranean Sea
-
West Mediterranean
-
Balearic Basin (1)
-
-
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Pleistocene
-
upper Pleistocene (1)
-
-
-
-
-
Primary terms
-
Cenozoic
-
Quaternary
-
Pleistocene
-
upper Pleistocene (1)
-
-
-
-
Europe
-
Southern Europe
-
Italy (1)
-
-
-
geophysical methods (1)
-
Mediterranean Sea
-
West Mediterranean
-
Balearic Basin (1)
-
-
-
ocean floors (1)
-
slope stability (1)
-
Abstract Megabeds are thick sedimentary layers extending over thousands of square kilometres in deep-sea basins and are thought to result from large slope failures triggered by major external events. Such deposits have been found in at least three areas of the Mediterranean Sea. Although their discovery dates back to the early 1980s, many questions remain concerning their initiation, source area, extent and the nature of their emplacement. One of the largest previously documented megabeds was emplaced during the Last Glacial Maximum across the Balearic Abyssal Plain, with a thickness of 8–10 m in water depths of up to 2800 m. New 3.5 kHz sub-bottom profiles and sediment cores provide greater constraints on the lateral variability of the megabed and allow it to be mapped beyond previous estimates, with a revised areal extent of 90 000–100 000 km 2 . The megabed terminations show a gradual pinchout to the west and an abrupt eastward termination against the steep Sardinia margin. The megabed presents, in seismic profiles and sediment cores, a tripartite subdivision, which most likely corresponds to the changes in flow regimes across the basin, with a central area of sandy facies and an erosional base oriented NNE–SSW; this allows renewed discussions about the sources and triggers of the megabed.
The Kramis Deep-Sea Fan Off Western Algeria: Role of Sediment Waves in Turbiditic Levee Growth
Abstract The Kramis deep-sea fan extends over 45 km at the base of the western Algerian continental slope between 2000 and 2550 m water depth and covers an area of approximately 1200 km 2 . The Kramis Fan was initiated after Messinian time, evolved during the Plio-Quaternary, and, is still active, as proved by submarine cable breaks during the 1954 Orléansville earthquake. The Kramis Fan is fed by two perpendicular canyons: the Kramis Canyon and the Khadra Canyon, merging in a single E–W-oriented channel confined at the foot of the slope. It is strongly asymmetric with a super-developed levee on the right-hand side of the channel, the Kramis Ridge. Based on recent multibeam, side-scan sonar, and sediment core data (Maradja, 2003 and 2005, Prisma, 2004, and Prisme, 2007 cruises), we describe the morphology and internal structure of the fan and particularly the sediment ridge, showing marked lateral changes in the sediment-wave morphology and their association with a series of large scours in the intermediate part of the ridge aligned in the continuity of the Khadra Canyon direction. Overall, the Kramis Ridge is formed by turbidity currents overspilling the ridge crest, which is 100 m above the channel floor, with two exceptions. In the distal part of the ridge the subdued ridge-crest height probably causes continuous overspill, testified by sediment waves migrating parallel to the channel. The scours occur in the intermediate part of the ridge where the ridge height is only 50–60 m; scours are interpreted as the result of cyclic steps due to flow stripping of currents provided by the intersection of the Khadra Canyon with the Kramis Canyon and Channel system. The scours probably postdate the main growth of the Kramis Ridge and induce the local erosion of the ridge, which could correspond to a new channel initiation cutting the ridge. The superposition or the interaction of flows with different directions is responsible of the amplification of the size of the sediment waves with erosional downside flanks and their transformation in scours. The Kramis Fan provides a clear example of flow interaction to explain the presence of large sediment waves and scours on modern submarine fans.
Abstract The Eocene-Oligocene Annot Sandstone of South East France is a sand-rich turbiditic system, up to 1000 m thick, which was deposited in several parallel and tectonically controlled sub-basins. For reservoir characterization purposes, three kilometer-scale outcrop areas were studied in detail, resulting in bed-scale, 2D and 3D architecture descriptions. The western Annot-Chalufy confined sub-basin, probably fed from a fan-delta located near Saint Antonin, shows a downstream evolution from very coarse-grained erosive channels (developing lateral terrace deposits) to tabular channelized or depositional lobes separated by thick heterolithic levels acting as major permeability barriers. The eastern Sanguinière narrow sub-basin was probably fed by multiple braided deltas at the border of the Alpine mountain chain to the east. In a ramp setting, coarsening then fining-upward sequences register the increase then decrease in flow energy of coarse-grained amalgamated channelized turbidites that evolve downstream into erosional channels, then finer-grained slope depositional channels and elongated sand tongues. In this framework, the geometrical and geostatistical characteristics of the constitutive architectural elements have been quantified. 3D geocellular reservoir models of the outcrops have been reconstructed and used for synthetic seismic modeling.