- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Seismostratigraphic analysis of Paleozoic sequences of the Midlands Microcraton
Abstract A regional review of publicly available seismic reflection lines and wells enables the identification across the Midlands Microcraton (MMC) of four Paleozoic seismostratigraphic megasequences, bounded by the Shelveian, Acadian, Symon and Variscan unconformities. The southern boundary of the MMC is drawn at a line of major change in pre-Permian subcrop, and most of central southern England is considered underlain by Paleozoic rocks of MMC character. The Lower Silurian Shelveian Unconformity cuts down through Ordovician and Cambrian rocks to the Precambrian and largely defines the distribution of these rocks in the region. However, more than 2500 m of Tremadoc shales are preserved SW of Swindon. Above the Shelveian, a characteristic shallow-marine Silurian is overlain by up to 3000 m of Old Red Sandstone facies, preserved in a north–south-orientated syncline. The Acadian Unconformity cuts down through folded Lower Paleozoic rocks, with the Frasnian transgression overlying Precambrian in places. Little Carboniferous was deposited across the MMC until uppermost Westphalian–Stephanian Warwickshire Group sandstones and coals were laid down across the erosion surface of the Symon Unconformity. The northern boundary of thin-skinned Variscan thrusting can be interpreted on seismic data but appears to have had little effect on the regional pre-Permian subcrop.
Abstract Gas has been found in Mesozoic reservoirs in the Weald Basin, particularly along the northern margin. Most of the gas is dry, with a high methane content and often associated nitrogen. Isotopic evidence indicates that the gas is from a thermogenically mature marine source. Although there is evidence of some shallow, biogenic gas, only the lowermost Lias is projected to have reached the thermogenic gas window before Tertiary uplift. Estimated maturities from isotopic data from the main gas accumulations indicate significantly greater levels than those projected for Liassic shales: thus, the gas is thought to have originated from Paleozoic rocks. Data on the distribution of Paleozoic rocks subcropping the Variscan unconformity is limited. However, available data suggest that their distribution owes more to Acadian erosion than to Variscan. It is thought that the Upper Devonian and Lower Carboniferous transgressed over a thick, folded Tremadocian shale sequence in the west, and over folded Silurian and Lower–Middle Devonian rocks in the central Weald. There is some evidence for the presence of isolated late Carboniferous or early Permian clastics but no significant coals have been encountered to date. Regional source studies suggest that the only Paleozoic rocks with potential are post-Acadian-aged Devonian shales.