- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
United States
-
Anadarko Basin (1)
-
Arkoma Basin (1)
-
Oklahoma
-
Osage County Oklahoma (1)
-
-
-
-
commodities
-
petroleum
-
natural gas (1)
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
geologic age
-
Paleozoic
-
Carboniferous
-
Mississippian (1)
-
-
-
-
Primary terms
-
carbon
-
C-13/C-12 (1)
-
-
diagenesis (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
Paleozoic
-
Carboniferous
-
Mississippian (1)
-
-
-
petroleum
-
natural gas (1)
-
-
sedimentary rocks
-
carbonate rocks
-
limestone (1)
-
-
clastic rocks
-
mudstone (1)
-
-
-
United States
-
Anadarko Basin (1)
-
Arkoma Basin (1)
-
Oklahoma
-
Osage County Oklahoma (1)
-
-
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
limestone (1)
-
-
clastic rocks
-
mudstone (1)
-
-
-
ABSTRACT Mississippian rocks in north-central Oklahoma were deposited on a ramp-shelf system that trended along an approximate northeast–southwest strike and that deepened to the southeast and southwest into the Arkoma and Anadarko basins. The system is bounded on the east by the Ozark uplift. Structure in this area is dominated by extensional and transverse faulting associated with the Transcontinental arch (Nemaha uplift). Shallower water (shelf) depositional settings dominate in the northern part of the study area and deepen toward the south into the Anadarko and Arkoma basins. Sedimentary rocks on the carbonate ramp are dominated by cyclic, partially dolomitized, argillaceous mudstones interbedded with fine-grained wackestones to grainstones. Intergrain pore space is filled by bladed, isopachous, and syntaxial marine calcite cements followed by blocky calcite cements. Limestone is commonly replaced by chert with intergrain open space filled by fine crystalline quartz (chert) cement. Late diagenetic fracture, breccia, and vug (FBV) porosity are filled by calcite and less commonly, by quartz cement that displays a coarse, blocky habit. Carbon and oxygen isotope values for limestones and replacive dolomite are consistent with precipitation from Mississippian seawater and mixed seawater–meteoric water; values for FBV-filling calcite cements indicate precipitation from evolved basinal waters. The 87 Sr/ 86 Sr values of calcite micrite, replacement dolomite, and fracture-filling calcite range from 0.7077 to 0.7112. The lower values are consistent with equilibration with Mississippian seawater through most of the study area. More radiogenic 87 Sr/ 86 Sr values for fracture-filling calcite cements in the northeast part of the study area indicate interaction with continental basement rocks or siliciclastic rocks derived from continental basement. Two-phase (liquid plus vapor) aqueous and petroleum inclusions were observed in FBV-filling calcite and quartz cements. The aqueous inclusions have homogenization temperatures of 48°C to 156°C and salinities ranging from 0 to 25 equivalent weight % NaCl equivalent, and reflect the presence of distinct dilute and saline fluid end-members. Calculated equilibrium δ 18 O water values (VSMOW) for fluids that precipitated fracture-filling calcite cements are variable, ranging from –0.3 to +14.5‰ and do not reflect a single end-member water. Early diagenesis was dominated by seawater-involved cementation, with modification by meteoric water during sea-level low-stands. FBV-filling calcite and quartz represent a later stage of diagenesis associated with petroleum generation and migration. Formation of fractures in the Mississippian section in north-central Oklahoma likely is related to fault movement along the Nemaha ridge instigated by Ouachita tectonism during the Pennsylvanian and extending into the Permian. This timing corresponds with regional flow of saline basinal fluids associated with the orogenic activity. These fluids ascended along faults and contributed to precipitation of FBV-filling cements. Calculated δ 18 O water values for calcite cement in some areas of north-central Oklahoma suggest that cement-depositing fluids approached isotopic equilibrium with the host carbonate rocks. In other areas, however, cement-depositing fluids have oxygen isotope signatures that reflect nonresident fluids whose flow was restricted to fault and fracture pathways, which did not permit isotopic equilibration with the host limestone. In particular, fracture-filling calcite veins from Osage County, with high 87 Sr/ 86 Sr (>0.710) and low δ 13 C values (–2.3‰ to –4.1‰), reflect fluids that retained isotopic characteristics that were derived through interaction with subjacent shale source rocks.
Abstract Irish Lower Carboniferous (Dinantian Subsystem) carbonate rocks are extensively replaced by planar dolomite. This dolomitization is unrestricted in lithology replaced, age of host rock and geographical occurrence. This paper presents geochemical (δ 18 O, δ 13 C, 87 Sr/ 86 Sr, Sr conc.) modelling evidence, and discussion supporting and extending the theory that replacement planar dolomitization formed in the Waulsortian, and other host rocks under shallow burial conditions via interaction with a low-temperature ( c. 50–70 °C) slightly modified seawater. The probable mechanism for transporting the fluid into the carbonates appears to be a variant of Kohout convection, driven by an elevated geothermal gradient. As seawater was drawn inwards, it encountered the units beneath the Waulsortian and scavenged radiogenic Sr. This warmer fluid then migrated upwards and up-slope into overlying Waulsortian and Supra-Waulsortian platform carbonates still undergoing early diagenesis. Calcium in pore fluids, provided by dissolution-precipitation reactions of calcite, was probably incorporated into the modified, and slightly warmer, seawater resulting in the variability noted in the planar replacement dolomite Sr concentrations. The early low-temperature dolomitization of the carbonate host rocks provided a crucial preparation event by creating/redistributing and preserving porosity and permeability. Younger regionally migrating high-temperature fluids directly related to the Zn-Pb mineralization in Ireland exploited these dolomitzed units as aquifers. The models and methodologies presented for understanding dolomite genesis in the Lower Carboniferous rocks of Ireland can be applied to any dolomitized reservoir.
Abstract Shallow-marine, Lower Carboniferous carbonate sequences of the SE Irish Midlands, close to the Leinster Massif, are intensely dolomitized. Fine-crystalline (<50 μm), planar-s (subhedral) dolomite is associated with evidence for evaporites, typical of arid peritidal sequences. However, stable isotope data suggest a diagenetic overprint. Volumetrically more important medium-crystalline (50–200 μm), planar-s and minor planar-e (euhedral) dolomites were precipitated from slightly modified Lower Carboniferous seawater. These dolomites replace open-marine intraclastic and bioclastic packstones and grainstones. Length-slow, fibrous quartz partially replaces crinoids and fills dissolution cavities beneath peritidal strata. Associated dolomites are gradually enriched in 18 O downward through the underlying strata, suggesting vertical brine migration. The widespread occurrence of skeletal material replaced by chalcedony in open-marine wackestones and grainstones further to the west, within the Rathdowney Trend, suggests evaporite cementation in the Zn-Pb mineralized area. Base-metal mineralization in the fractured Waulsortian ‘reservoir’ is associated with chloride-enriched brines (beyond that expected from seawater evaporation alone). The presence of evaporites in the Leinster Massif area suggests a possible source of the excess chloride. The dolomitizing brine may have contributed to the overall chemistry of the Zn-Pb mineralizing fluid and also to the distribution of porosity within the carbonate platform. An Arundian or younger age is suggested for the mineralization, based on the timing of evaporite cement emplacement, and this is compatible with numerical fluid-flow models of brine movement through the carbonate platform. Dolomitization of Lower Carboniferous carbonate rocks of the Irish Midlands is comparable to diagenetic histories of several important dolomite petroleum reservoirs. This study provides an example that may be applied to petroleum exploration in similar geological settings.