- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Abstract: Isostasy is a well understood concept, yet rarely applied to its full capacity in regional interpretations of crustal structures. In this study, we utilize a recent density model for the entire NE Atlantic, based on refraction seismic data and gravity inversion, to calculate isostatically balanced bathymetry along the mid-Norwegian margin. Since gravity and isostatically balanced elevation are independent observables but both depend on the underlying density model, consistencies and discrepancies point towards model deficits, erroneously interpreted or poorly understood areas. Four areas of large isostatic residuals are identified. Along the outer Vøring Margin, a mass deficit points to more extensive high-density bodies or a shallower Moho than currently mapped. Farther seaward, along the Vøring Marginal High, a mass excess indicates inaccurate mapping of the continent–ocean boundary and surrounding structures. A number of eclogitic bodies along the proximal mid-Norwegian margin have been described in recent publications and their presence is now also confirmed by isostatic calculations. Major elevation and gravity residuals along the transition between the Vøring and Møre margins signify that the structure of this region is poorly understood and modifications to the mapped continent–ocean transition may be required.
Abstract The crustal structure of northern Africa is puzzling, large areas being of difficult access and concealed by the Sahara. The new global gravity models are of unprecedented precision and spatial resolution and offer a new possibility to reveal the structure of the lithosphere beneath the Sahara. The gravity gradients correlate better than gravity with geological features such as rifts, fold belts and magmatic deposits and intrusions. They are an ideal tool to follow geological units (e.g. basement units) below a stratigraphic layer of varying density (e.g. sediments). We focus on the Chad lineament, a 1300 km arcuate feature located between the west and central African rift system. The gravity fields show differences between the lineament and the west and central African rift system. Along the centre of the lineament high-density rocks must be present, which relate to either magmatic or metamorphic rocks. This is very different to the lineaments of the western and central-west African rift system which are filled with sediments. Considering present models of rifting and the absence of topography, the lineament cannot be coeval to the west and central African rift system and is most likely older. We suggest that the lineament is a structural element of the Saharan Metacraton.
Abstract New gravity and magnetic anomaly maps for the Barents and Kara Sea region only allow mapping of tectonic features where the thick sedimentary cover is tectonically disturbed. Maps of sedimentary thickness and depth to top basement and the Moho differ between the western and eastern Barents Sea, although detailed thickness and depth estimates require calibration by seismic data. Internal plate boundaries created during the amalgamation of the Barents Sea region were not detected using potential field data.