- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Atlantic Ocean
-
North Atlantic
-
Faeroe-Shetland Basin (1)
-
-
-
Atlantic Ocean Islands
-
Faeroe Islands (1)
-
-
Europe
-
Western Europe (1)
-
-
-
commodities
-
oil and gas fields (1)
-
petroleum
-
natural gas (1)
-
-
-
geologic age
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous (1)
-
-
Jurassic (1)
-
Triassic (1)
-
-
-
Primary terms
-
Atlantic Ocean
-
North Atlantic
-
Faeroe-Shetland Basin (1)
-
-
-
Atlantic Ocean Islands
-
Faeroe Islands (1)
-
-
Europe
-
Western Europe (1)
-
-
geophysical methods (1)
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous (1)
-
-
Jurassic (1)
-
Triassic (1)
-
-
oil and gas fields (1)
-
petroleum
-
natural gas (1)
-
-
Abstract The exploratory drilling of 200 wildcat wells along the NE Atlantic margin has yielded 30 finds with total discovered resources of c. 4.1×10 9 barrels of oil equivalent (BOE). Exploration has been highly concentrated in specific regions. Only 32 of 144 quadrants have been drilled, with only one prolific province discovered – the Faroe–Shetland Basin, where 23 finds have resources totalling c. 3.7×10 9 BOE. Along the margin, the pattern of discoveries can best be assessed in terms of petroleum systems. The Faroe–Shetland finds belong to an Upper Jurassic petroleum system. On the east flank of the Rockall Basin, the Benbecula gas and the Dooish condensate/gas discoveries have proven the existence of a petroleum system of unknown source – probably Upper Jurassic. The Corrib gas field in the Slyne Basin is evidence of a Carboniferous petroleum system. The three finds in the northern Porcupine Basin are from Upper Jurassic source rocks; in the south, the Dunquin well (44/23-1) suggests the presence of a petroleum system there, but of unknown source. This pattern of petroleum systems can be explained by considering the distribution of Jurassic source rocks related to the break-up of Pangaea and marine inundations of the resulting basins. The prolific synrift marine Upper Jurassic source rock (of the Northern North Sea) was not developed throughout the pre-Atlantic Ocean break-up basin system west of Britain and Ireland. Instead, lacustrine–fluvio-deltaic–marginal marine shales of predominantly Late Jurassic age are the main source rocks and have generated oils throughout the region. The structural position, in particular relating to the subsequent Early Cretaceous hyperextension adjacent to the continental margin, is critical in determining where this Upper Jurassic petroleum system will be most effective.
Abstract Temperature-time–based first-order kinetic models are currently used to predict hydrocarbon generation and maturation in basin modeling. Physical chemical theory, however, indicates that water pressure should exert significant control on the extent of these hydrocarbon generation and maturation reactions. We previously heated type II Kimmeridge Clay source rock in the range of 310 to 350°C at a water pressure of 500 bar to show that pressure retarded hydrocarbon generation. This study extended a previous study on hydrocarbon generation from the Kimmeridge Clay that investigated the effects of temperature in the range of 350 to 420°C at water pressures as much as 500 bar and for periods of 6, 12, and 24 hr. Although hydrocarbon generation reactions at temperatures of 420°C are controlled mostly by the high temperature, pressure is found to have a significant effect on the phase and the amounts of hydrocarbons generated. In addition to hydrocarbon yields, this study also includes the effect of temperature, time, and pressure on maturation. Water pressure of 390 bar or higher retards the vitrinite reflectance by an average of ca. 0.3% Ro compared with the values obtained under low pressure hydrous conditions across the temperature range investigated. Temperature, pressure, and time all control the vitrinite reflectance. Therefore, models to predict hydrocarbon generation and maturation in geological basins must include pressure in the kinetic models used to predict the extent of these reactions.
Petroleum geochemistry of the Lower and Middle Jurassic in Atlantic margin basins of Ireland and the UK
Abstract Potential hydrocarbon source rocks of Lower and Middle Jurassic age have been reported from outcrop, shallow boreholes and exploration wells in Atlantic margin basins of the UK (Hebrides, West of Shetlands and flanking the NE Rockall Trough) and, recently, in the continuation of this trend offshore Ireland (Slyne, Erris and Porcupine basins). Previously these organic-rich mudrocks were considered to be of little economic importance, due largely to their perceived limited areal distribution and low maturity. However, recent geochemical studies of oils and shales from exploration drilling of thèse basins shows the Lower and Middle Jurassic to have considerable potential as effective hydrocarbon source rocks, supplanting the Late Jurassic-Early Cretaceous Kimmeridge Clay Formation equivalents as the only viable oil source rock in the region. Flanking the Atlantic margin in the Irish and UK sectors, rich oil source potential occurs in two transgressive mudrock cycles of Lower Jurassic age. These are the Sinemurian-Pliensbachian interval and the overlying Toarcian section, present in basins such as the Solan, Minch, Hebrides, Slyne, North Celtic Sea, St George’s Channel and Central English Channel. The Middle Jurassic source rocks have a more limited areal distribution and occur in the Faroe-Shetland, Solan, West Lewis, West Flannan, Hebrides, Slyne and North Porcupine basins with oil source potential in regressive marginal marine to lacustrine facies mudrocks. Geochemical studies were undertaken on mudrocks from the Lower and Middle Jurassic sections in Atlantic margin basins (outcrop, shallow borehole core and exploration well cores and cuttings samples) and on oils from drill stem test and shows (core and cuttings extracts). Detailed analyses using GC, GC-MS and carbon isotopes allowed both characterization of the source rocks and oil-to-source correlation. Biomarker and carbon isotope studies of oils from the Faroe-Shetland Basin (Foinaven and Schiehallion fields), the Porcupine Basin (Connemara accumulation), the Wessex Basin (Wytch Farm and Kimmeridge oil fields) and wells in the Slyne Basin show strong correlations to the various source rock developments in the Lower and Middle Jurassic. The mixed biodegraded Foinaven and Schiehallion oils have a major waxy component and correlate with lacustrine Middle Jurassic source rocks in the Solan and West Lewis/West Flannan basins. Middle Jurassic sourcing of the Connemara oils is also suggested, while oils in the Slyne Basin appear to have been largely sourced by the Lower Jurassic Pabba Shale Formation. Oils in the Wessex Basin (Wytch Farm and Kimmeridge) appear to have been sourced by Hettangian-Sinemurian mudrocks and those in the North Celtic Sea Basin by Toarcian source rocks. The results from this study, in combination with previously published data, show that rich, effective oil-prone source rocks occur in both the Lower and Middle Jurassic of the Atlantic margin basins offshore Ireland and the UK. These source rocks can be correlated with indigenous oils, indicating the existence of a previously under-evaluated petroleum system.