- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
United States
-
Nevada (1)
-
Utah
-
Emery County Utah (1)
-
-
-
-
geologic age
-
Mesozoic
-
Jurassic
-
Aztec Sandstone (1)
-
-
-
-
Primary terms
-
deformation (2)
-
faults (2)
-
folds (1)
-
Mesozoic
-
Jurassic
-
Aztec Sandstone (1)
-
-
-
sedimentary rocks
-
clastic rocks
-
sandstone (2)
-
-
-
stratigraphy (1)
-
structural analysis (2)
-
tectonics (2)
-
United States
-
Nevada (1)
-
Utah
-
Emery County Utah (1)
-
-
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
sandstone (2)
-
-
-
A review of deformation bands in reservoir sandstones: geometries, mechanisms and distribution
Abstract Deformation bands are common subseismic structures in porous sandstones that vary with respect to deformation mechanisms, geometries and distribution. The amount of cataclasis involved largely determines how they impact fluid flow, and cataclasis is generally promoted by coarse grain size, good sorting, high porosity and overburden (usually >500–1000 m). Most bands involve a combination of shear and compaction, and a distinction can be made between those where shear displacement greatly exceeds compaction (compactional shear bands or CSB), where the two are of similar magnitude (shear-enhanced compaction bands or SECB), and pure compaction bands (PCB). The latter two only occur in the contractional regime, are characterized by high (70–100°) dihedral angles (SECB) or perpendicularity (PCB) to σ 1 (the maximum principal stress) and are restricted to layers with very high porosity. Contraction generally tends to produce populations of well-distributed deformation bands, whereas in the extensional regime the majority of bands are clustered around faults. Deformation bands also favour highly porous parts of a reservoir, which may result in a homogenization of the overall reservoir permeability and enhance sweep during hydrocarbon production. A number of intrinsic and external variables must therefore be considered when assessing the influence of deformation bands on reservoir performance.
Abstract Little is known about the effect of thrusting on lithological and petrophysical properties of reservoir sandstone. Here we use field observations, probe permeability measurements and thin-section analysis along ten transects from the Muddy Mountain thrust contact downwards into the underlying Jurassic Aztec Sandstone to evaluate the nature and extent of petrophysical and microstructural changes caused by the thrusting. The results reveal a decimetre- to metre-thick low-permeable (≤50 mD) and indurated (0–3% porosity) zone immediately beneath the thrust contact in which dominant microscale processes, in decreasing order of importance, are (1) cataclasis with local fault gouge formation; (2) pressure solution; and (3) very limited cementation. From this narrow zone the petrophysical and microstructural effect of the thrusting decreases gradually downwards into a friable, highly porous ( c. 25%) and permeable (≤2 D) sandstone some 50–150 m below the thrust, in which strain is localized into deformation band populations. In general, the petrophysical properties of the sandstone as a result of overthrusting reveal little impact in overall primary reservoir quality below some tens of metres into the footwall, except for the relatively minor baffling effect of deformation bands.