- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems
Abstract Palaeogeographic and tectono-stratigraphic considerations in the greater Barents Sea show that the distribution of reservoirs and hydrocarbon source rocks from the Late Palaeozoic to the Palaeogene can be related to three tectonic phases. Firstly, the Palaeozoic Caledonain Orogeny caused uplift to the west, followed by eastward sediment distribution across the shelf, towards carbonate platforms to the east. Secondly the Late Palaeozoic–Mesozoic Uralide Orogeny induced uplift to the east, causing widespread clastic deposition and reversal of the sediment distribution pattern. Thirdly, major Late Mesozoic–Cenozoic rifting and crustal breakup in the western Barents Sea led to the current basin configuration. Reservoir rocks comprise Late Palaeozoic carbonates and spiculites, Mesozoic terrestrial and marine sandstones and Palaeogene deep-water sandstones. Hydrocarbon source rocks range in age from Silurian to Early Cretaceous, and are grouped into three petroleum systems derived from Late Palaeozoic, Triassic and Late Jurassic source rocks. Multiple tectonic episodes caused formation of a variety of trap types, of which extensional fault blocks and gently folded domes have been the most prospective. Volumetric considerations of generated petroleum indicate that charging is not a limiting factor, except in the western margin.
Uplift and erosion of the greater Barents Sea: impact on prospectivity and petroleum systems
Abstract A regional net erosion map for the greater Barents Sea shows that the different areas in the Barents Sea region have been subject to different magnitudes of uplift and erosion. Net erosion values vary from 0 to more than 3000 m. The processes have important consequences for the petroleum systems. Reservoir quality, maturity of the source rocks and the migration of hydrocarbons are affected by the processes. Owing to changes in the PVT conditions in a hydrocarbon-filled structure, uplift and erosion increase the risk of leakage and expansion of the gas cap in a structure. Understanding of the timing of uplift and re-migration of hydrocarbons has been increasingly important in the exploration of the Barents Sea.