- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Arctic Ocean
-
Alpha Cordillera (1)
-
Amerasia Basin (1)
-
Beaufort Sea (1)
-
Canada Basin (1)
-
Chukchi Sea (1)
-
Lomonosov Ridge (1)
-
Makarov Basin (1)
-
-
Arctic region
-
Russian Arctic
-
Wrangel Island (1)
-
-
-
Asia
-
Chukotka Russian Federation (2)
-
Wrangel Island (1)
-
-
Commonwealth of Independent States
-
Russian Federation
-
Chukotka Russian Federation (2)
-
Russian Arctic
-
Wrangel Island (1)
-
-
-
-
Pacific Ocean
-
North Pacific
-
Bering Sea
-
Aleutian Basin (1)
-
-
-
-
United States
-
Alaska
-
Aleutian Islands (1)
-
-
-
-
elements, isotopes
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
O-18/O-16 (1)
-
-
-
Lu/Hf (1)
-
oxygen
-
O-18/O-16 (1)
-
-
-
geochronology methods
-
Lu/Hf (1)
-
U/Pb (1)
-
-
geologic age
-
Cenozoic (1)
-
Mesozoic (1)
-
Paleozoic (1)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (1)
-
-
-
-
-
igneous rocks
-
igneous rocks (1)
-
-
minerals
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (1)
-
-
-
-
-
-
Primary terms
-
absolute age (1)
-
Arctic Ocean
-
Alpha Cordillera (1)
-
Amerasia Basin (1)
-
Beaufort Sea (1)
-
Canada Basin (1)
-
Chukchi Sea (1)
-
Lomonosov Ridge (1)
-
Makarov Basin (1)
-
-
Arctic region
-
Russian Arctic
-
Wrangel Island (1)
-
-
-
Asia
-
Chukotka Russian Federation (2)
-
Wrangel Island (1)
-
-
Cenozoic (1)
-
continental shelf (1)
-
crust (1)
-
geochemistry (1)
-
geochronology (1)
-
geophysical methods (1)
-
igneous rocks (1)
-
isotopes
-
stable isotopes
-
O-18/O-16 (1)
-
-
-
Mesozoic (1)
-
oxygen
-
O-18/O-16 (1)
-
-
Pacific Ocean
-
North Pacific
-
Bering Sea
-
Aleutian Basin (1)
-
-
-
-
paleogeography (1)
-
Paleozoic (1)
-
plate tectonics (2)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (1)
-
-
-
-
stratigraphy (1)
-
tectonics (2)
-
United States
-
Alaska
-
Aleutian Islands (1)
-
-
-
Zircon petrochronology of Cretaceous Cordilleran interior granites of the Snake Range and Kern Mountains, Nevada, USA
ABSTRACT We addressed fundamental questions about the lithology, age, structure, and thermal evolution of the deep crust of the retroarc hinterland of the North American Cordilleran orogen through systematic investigation of zircons from Cretaceous plutons in the Snake Range and Kern Mountains of east-central Nevada. Geochronological (U-Pb) and geochemical (trace element, O and Hf isotopes) characterization of pre- and synmagmatic growth domains of zircons, coupled with traditional petrologic methods (petrography, field relationships, and whole-rock major-element, trace-element, and Sr-Nd and Pb isotope geochemistry), fingerprinted temporal variations in crustal contributions to magmatism. The samples are typical felsic, peraluminous Cordilleran interior granitoids that formed between 102 ± 2 Ma and 71 ± 1 Ma (95% confidence). Over the entire time span of magmatism, 87 Sr/ 86 Sr initial , εNd ( t ) , 208 Pb/ 204 Pb, and εHf ( t ) exhibit incrementally more “crustal” ratios. The oldest and youngest samples, respectively, predate and postdate all published timing constraints of Cretaceous peak metamorphism in the region and exhibit the least and most radiogenic whole-rock isotopic results in the study ( 87 Sr/ 86 Sr initial = 0.7071 vs. 0.7222; εNd ( t ) = −3.4 vs. −18.8; 208 Pb/ 204 Pb = 38.8 vs. 40.1). Accordingly, the least intrasample variability of εHf ( t ) , δ 18 O Zrc , and trace-element ratios in magmatic zircon domains is also observed in these oldest and youngest samples, whereas greater intrasample variability is observed in intermediate-age samples that intruded during peak metamorphism. The geochemistry of zircon growth in the intermediate-age samples suggests assimilation of partially molten metasedimentary crust led to increased heterogeneity in their magma chemistry. Interaction of magmas with distinctive crust types is indicated by contrasts between four categories of inherited zircon observed in the studied intrusions: (1) detrital zircon with typical magmatic trace-element ratios; (2) zircon derived from high-grade 1.8–1.6 Ga basement; (3) zircon with anomalously low δ 18 O of uncertain origin, derived from 1.7/2.45 Ga basement (or detritus derived thereof); and (4) zircon from variably evolved Jurassic–Early Cretaceous deep-seated intrusions. The progression of zircon inheritance patterns, correlated with evolving geochemical signatures, in Late Cretaceous granitic plutons is best explained by early, relatively primitive intrusions and their penecontemporaneously metamorphosed country rock having been tectonically transported cratonward and superposed on older basement, from which the later, more-evolved Tungstonia pluton was generated. This juxtaposition consequentially implies tectonic transport of synorogenic plutonic rocks occurred in the Cordilleran hinterland during the Sevier orogeny as a result of the interplay of retroarc magmatism and convergent margin tectonism.
Abstract This paper synthesizes the framework and geological evolution of the Arctic Alaska–Chukotka microplate (AACM), from its origin as part of the continental platform fringing Baltica and Laurentia to its southward motion during the formation of the Amerasia Basin (Arctic Ocean) and its progressive modification as part of the dynamic northern palaeo-Pacific margin. A synthesis of the available data refines the crustal identity, limits and history of the AACM and, together with regional geological constraints, provides a tectonic framework to aid in its pre-Cretaceous restoration. Recently published seismic reflection data and interpretations, integrated with regional geological constraints, provide the basis for a new crustal transect (the Circum-Arctic Lithosphere Evolution (‘CALE’) Transect C) linking the Amerasia Basin and the Pacific margin along two paths that span 5100 km from the Lomonosov Ridge (near the North Pole), across the Amerasia Basin, Chukchi Sea and Bering Sea, and ending at the subducting Pacific plate margin in the Aleutian Islands. We propose a new plate tectonic model in which the AACM originated as part of a re-entrant in the palaeo-Pacific margin and moved to its present position during slab-related magmatism and the southward retreat of palaeo-Pacific subduction, largely coeval with the rifting and formation of the Amerasia Basin in its wake. Supplementary material: Supplementary material Plate 1 (herein referred to as Sup. Pl. 1) comprises Plate 1 and its included figures, which are an integral part of this paper. Plate 1 contains regional reflection-seismic-based cross sections and supporting material that collectively constitute CALE Transects C1 and C2 and form an important part of our contribution. Plate 1 is referred to in the text as Sup. Pl. 1, Transects C1 and C2 as Plate 1A and 1B, and plate figures as fig. P1.1, fig. P1.2, etc.). Supplementary material 2 contains previously unpublished geochronologic data on detrital zircon suites and igneous rocks. Supplementary material are available at https://doi.org/10.6084/m9.figshare.c.3826813
Abstract The pre-Cenozoic kinematic and tectonic history of the Arctic Alaska Chukotka (AAC) terrane is not well known. The difficulties in assessing the history of the AAC terrane are predominantly due to a lack of comprehensive knowledge about the composition and age of its basement. During the Mesozoic, the AAC terrane was involved in crustal shortening, followed by magmatism and extension with localized high-grade metamorphism and partial melting, all of which obscured its pre-orogenic geological relationships. New zircon geochronology and isotope geochemistry results from Wrangel Island and western Chukotka basement rocks establish and strengthen intra- and inter-terrane lithological and tectonic correlations of the AAC terrane. Zircon U–Pb ages of five granitic and one volcanic sample from greenschist facies rocks on Wrangel Island range between 620 ± 6 and 711 ± 4 Ma, whereas two samples from the migmatitic basement of the Velitkenay massif near the Arctic coast of Chukotka yield 612 ± 7 and 661 ± 11 Ma ages. The age spectrum (0.95–2.0 Ga with a peak at 1.1 Ga and minor 2.5–2.7 Ga) and trace element geochemistry of inherited detrital zircons in a 703 ± 5 Ma granodiorite on Wrangel Island suggests a Grenville–Sveconorwegian provenance for metasedimentary strata in the Wrangel Complex basement and correlates with the detrital zircon spectra of strata from Arctic Alaska and Pearya. Temporal patterns of zircon inheritance and O–Hf isotopes are consistent with Cryogenian–Ediacaran AAC magmatism in a peripheral/external orogenic setting (i.e. a fringing arc on rifted continental margin crust). Supplementary material: Secondary ion mass spectrometry (SIMS) U–Pb zircon geochronology data, SIMS zircon 18 O/ 16 O isotopic data, laser ablation inductively coupled mass spectrometry zircon Lu–Hf isotopic data and zircon cathodoluminescence images are available at https://doi.org/10.6084/m9.figshare.c.3741314