- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Abstract For the past two decades geodetic measurements have quantified surface displacement fields for the continents, illustrating a general complexity. However, the linkage of geodetically defined displacements in the continents to mantle flow and plate tectonics demands understanding of ductile deformations in the middle and lower continental crust. Advances in seismic anisotropy studies are beginning to allow such work, especially in the Himalaya and Tibet, using passive seismological experiments (e.g. teleseismic receiver functions and records from local earthquakes). Although there is general agreement that measured seismic anisotropy in the middle and lower crust reflects bulk mineral alignment (i.e. crystallographic preferred orientation, CPO), there is a need to calibrate the seismic response to deformation structures and their kinematics. Here, we take on this challenge by deducing the seismic properties of typical mid- and lower-crustal rocks that have experienced ductile deformation through quantitative measures of CPO in samples from appropriate outcrops. The effective database of CPO and hence seismic properties can be expanded by a modelling approach that utilizes ‘rock recipes’ derived from the as-measured individual mineral CPOs combined in varying modal proportions. In addition, different deformation fabrics may be diagnostic of specific deformation kinematics that can serve to constrain interpretations of seismic anisotropy data from the continental crust. Thus, the use of ‘fabric recipes’ based on subsets of individual rock fabric CPO allows the effect of different fabrics (e.g. foliations) to be investigated and interpreted from their seismic response. A key issue is the possible discrimination between continental crustal deformation models with strongly localized simple-shear (ductile fault) fabrics from more distributed (‘pure-shear’) crustal flow. The results of our combined rock and fabric-recipe modelling suggest that the seismic properties of the middle and lower crust depend on deformation state and orientation as well as composition, while reliable interpretation of seismic survey data should incorporate as many seismic properties as possible.
From crystal to crustal: petrofabric-derived seismic modelling of regional tectonics
Abstract The Nanga Parbat Massif (NPM), Pakistan Himalaya, is an exhumed tract of Indian continental crust and represents an area of active crustal thickening and exhumation. While the most effective way to study the NPM at depth is through seismic imaging, interpretation depends upon knowledge of the seismic properties of the rocks. Gneissic, ‘mylonitic’ and cataclastic rocks emplaced at the surface were sampled as proxies for lithologies and fabrics currently accommodating deformation at depth. Mineral crystallographic preferred orientations (CPO) were measured via scanning electron microscope (SEM)/electron backscatter diffraction (EBSD), from which three-dimensional (3D) elastic constants, seismic velocities and anisotropies were predicted. Micas make the main contribution to sample anisotropy. Background gneisses have highest anisotropy (up to 10.4% shear-wave splitting, AVs) compared with samples exhibiting localized deformations (e.g. ‘mylonite’, 4.7% AVs; cataclasite, 1% AVs). Thus, mylonitic shear zones may be characterized by regions of low anisotropy compared to their wall rocks. CPO-derived sample elastic constants were used to construct seismic models of NPM tectonics, through which P-, S- and converted waves were ray-traced. Foliation orientation has dramatic effects on these waves. The seismic models suggest dominantly pure-shear tectonics for the NPM involving horizontal compression and vertical stretching, modified by localized ductile and brittle (‘simple’) shear deformations.
Abstract Since the early descriptions published by Callaway in 1884, the gently dipping mylonites exposed along the Moine Thrust at the Stack of Glencoul have drawn generations of geologists to the northern part of the Assynt district. These mylonites, derived from Cambrian quartzites (footwall) and Moine pelites and psammites (hanging wall), have figured prominently in: a) early research into the influence of crystal plastic deformation and recrystallization on microstructural and crystal fabric evolution; b) debates on the kinematic interpretation of macro- and micro-structures and crystal fabrics; and c) debates on the tectonic significance of such kinematic data. In this paper first we briefly review the historical aspects of this research and then, using both previously published and unpublished data, document the finite strain and quartz fabric development at this classic mylonite locality. A tectonic interpretation of these data, together with quantitative estimates of flow vorticities associated with mylonite formation at the Stack of Glencoul, are presented in a companion paper by Law (2010) .