- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Abstract During the early to mid-Ordovician, marine life experienced an unprecedented rise in diversity at the species, genus and family levels that firmly installed the suspension-feeding benthos as the main component of the Palaeozoic fauna. The earlier Ordovician was characterized by a wide dispersal of the continents together with a high frequency of microcontinents and volcanic arcs. Magmatic and tectonic activity was intense, climates were warm and sea levels were high. Central to the entire diversification is the role of gamma (inter-provincial) diversity and by implication the spread of the continents and frequency of island arcs and microcontinents. A disparate group of continental fragments and island arcs loosely assigned to the Celtic province contained distinctive shelly faunas that formed a testable biogeographical unit. The Celtic faunas are characterized by a large number of endemic brachiopod taxa, some cosmopolitan forms, and taxa at the beginning or end of their stratigraphical ranges. The associated trilobite faunas are composed largely of wide-ranging genera, a few genera at the start of their stratigraphical range and some recently evolved taxa extending their geographical range. The Celtic province helped provide a burst of gamma diversity during the early stages of the Ordovician Radiation whereas the timing and position of the archipelagos associated with the Celtic province may have provided a mechanism for the diachroneity associated with the diversification.
Abstract Conodont-bearing limestone clasts in Lower Old Red Sandstone conglomerates in the Lanark and Strathmore basins and the Pentland Hills Inlier, Midland Valley, Scotland, indicate a source in a cryptic arc terrane with a mid-Ordovician (P. serra – P. anserinus Biozone) limestone cover. Simpson coefficients of similarity indicate that the faunas from the limestone clasts are closer to conodont faunas from the Holy Cross Mountains, Poland, and the Wrae Limestone in the Northern Belt of the Southern Uplands, than to those in coeval strata from the Laurentian margin including Girvan. Conodont colour alteration index values indicate separate thermal histories for the limestone clasts and coeval strata in the Girvan Inlier. The cryptic arc was located to north of the Northern Belt of the Southern Uplands during Ashgill time and to south of the Midland Valley in Late Silurian–Early Devonian time and clearly had a complex tectonic history.