Skip to Main Content
Book Chapter

Ab initio theory of phase transitions and thermoelasticity of minerals

By
Artem R. Oganov
Artem R. Oganov
University College London, Gower Street, London WC1E 6BT, U.K.
Search for other works by this author on:
John P. Brodholt
John P. Brodholt
University College London, Gower Street, London WC1E 6BT, U.K.
Search for other works by this author on:
G. David Price
G. David Price
University College London, Gower Street, London WC1E 6BT, U.K.
Search for other works by this author on:
Published:
January 01, 2002

Abstract

Accurate quantum-mechanical simulations have significantly extended the current picture of the Earth and hold a great promise for the future of the Earth and planetary sciences. Studies of phase transitions, equations of state, elasticity and thermoelastic properties of the Earth-forming minerals are essential to geophysics. This chapter gives a basic background of the physics of the deep Earth and outlines the theory of phase transitions, equations of state, elasticity and thermoelastic properties. A particular emphasis is put on the principles of quantum-mechanical simulations and some recent results relevant to geophysics.

The importance of quantum-mechanical simulations is reflected by the award of the 1998 Nobel Prize in Chemistry to W. Kohn and J. Pople, who were among the pioneers of this field. Areas of application of such simulations are extremely diverse and include studies of the electronic structure, reactivity, catalysis, bulk and surface structure, prediction of materials structures and properties, especially at extreme conditions, calculation of phase diagrams and studies of phase transitions etc.

One of the most exciting areas of application of such simulations is the study of the Earth- (and planet-) forming minerals at the extreme conditions of the Earth's interior. One can accurately predict the structures, properties, and behaviour of minerals. This often reveals new aspects of mineral crystal chemistry and allows one to explain geophysical measurements and understand better how the Earth works as a planet. This chapter consists of five major parts – Part I: Brief geophysical introduction, Part II: Thermoelastic properties, Part III: Phase transitions, Part IV:

You do not currently have access to this article.

Figures & Tables

Contents

European Mineralogical Union Notes in Mineralogy

Energy Modelling in Minerals

Carlo Maria Gramaccioli
Carlo Maria Gramaccioli
Search for other works by this author on:
Mineralogical Society of Great Britain and Ireland
Volume
4
ISBN electronic:
9780903056397
Publication date:
January 01, 2002

GeoRef

References

Related

Citing Books via

A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal