Skip to Main Content
Book Chapter

Thermochemistry, energetic modelling and systematic

By
Alexandra Navrotsky
Alexandra Navrotsky
Thermochemistry Facility, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, CA 95616 USA;
Search for other works by this author on:
Published:
January 01, 2002

Abstract

Experimental thermochemistry provides data on heat capacities, entropies, enthalpies of phase transitions, and enthalpies of formation of minerals and other materials relevant to the Earth Sciences. Such data can be used to construct empirical models of systematic trends and to benchmark models and first principles calculations. This paper provides a summary of the capabilities of modern experimental techniques and focuses on three case studies (lanthanide and actinide oxide materials, perovskites and nanomaterials) which link calorimetric data and computational predictions.

Thermodynamics plays a twofold role in the science of minerals and materials. At the macroscopic level, thermodynamic parameters provide a description of the equilibrium state of complex multicomponent systems, enabling the calculation of crystallisation and melting relations, aqueous solubility, ordering, exsolution, solid solution formation, phase transformation and other processes relevant to the evolution of phase chemistry with composition, pressure, temperature and, in some cases, time. On the microscopic level, energetics provide insight into the strengths of chemical bonds, the nature of lattice vibrations and processes involving the ordering of atoms, electrons and spins. In the latter sense, thermodynamics can be viewed as a crude form of spectroscopy, smeared out over the frequency domain, and coming out with values of energy, heat capacity and entropy which reflect the most important interatomic interactions, averaged by nature. This averaging is the strength of thermodynamics; it assesses the net effect of many competing interactions. The real thermodynamic parameter, when correctly measured, provides a comparison and benchmark for theory, which uses, of necessity, simplified models of interatomic interactions, whether by using

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

European Mineralogical Union Notes in Mineralogy

Energy Modelling in Minerals

Carlo Maria Gramaccioli
Carlo Maria Gramaccioli
Search for other works by this author on:
Mineralogical Society of Great Britain and Ireland
Volume
4
ISBN electronic:
9780903056397
Publication date:
January 01, 2002

GeoRef

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal