Skip to Main Content
Book Chapter

Laramide basin CSI: Comprehensive stratigraphic investigations of Paleogene sediments in the Colorado Headwaters Basin, north-central Colorado

By
Marieke Dechesne
Marieke Dechesne
U.S. Geological Survey (contractor), Mail Stop 980, Denver, Colorado 80225, USA
Search for other works by this author on:
James C. Cole
James C. Cole
U.S. Geological Survey, Mail Stop 980, Denver, Colorado 80225, USA
Search for other works by this author on:
James H. Trexler, Jr.
James H. Trexler, Jr.
Department of Geological Sciences, Campus Box 172, University of Nevada-Reno, Reno, Nevada 89557-0138, USA
Search for other works by this author on:
Patricia H. Cashman
Patricia H. Cashman
Search for other works by this author on:
Christopher D. Peterson
Christopher D. Peterson
Search for other works by this author on:
Published:
January 01, 2013

Abstract

The Paleogene sedimentary deposits of the Colorado Headwaters Basin provide a detailed proxy record of regional deformation and basin subsidence during the Laramide orogeny in north-central Colorado and southern Wyoming. This field trip presents extensive evidence from sedimentology, stratigraphy, structure, palynology, and isotope geochronology that shows a complex history that is markedly different from other Laramide synorogenic basins in the vicinity.

We show that the basin area was deformed by faulting and folding before, during, and after deposition of the Paleogene rocks. Internal unconformities have been identified that further reflect the interaction of deformation, subsidence, and sedimentation. Uplift of Proterozoic basement blocks that make up the surrounding mountain ranges today occurred late in basin history. Evidence is given to reinterpret the Independence Mountain uplift as the result of significant normal faulting (not thrusting), probably in middle Tertiary time.

While the Denver and Cheyenne Basins to the east were subsiding and accumulating sediment during Late Cretaceous time, the Colorado Headwaters Basin region was experiencing vertical uplift and erosion. At least 1200 m of the upper part of the marine Upper Cretaceous Pierre Shale was regionally removed, along with Fox Hills Sandstone shoreline deposits of the receding Interior Seaway as well as any Laramie Formation–type continental deposits. Subsidence did not begin in the Colorado Headwaters Basin until after 60.5 Ma, when coarse, chaotic, debris-flow deposits of the Paleocene Windy Gap Volcanic Member of the Middle Park Formation began to accumulate along the southern basin margin. These volcaniclastic conglomerate deposits were derived from local, mafic-alkalic volcanic sources (and transitory deposits in the drainage basin), and were rapidly transported into a deep lake system by sediment gravity currents. The southern part of the basin subsided rapidly (roughly 750–1000 m/m.y.) and the drainage system delivered increasing proportions of arkosic debris from uplifted Proterozoic basement and more intermediate-composition volcanic-porphyry materials from central Colorado sources.

Other margins of the Colorado Headwaters Basin subsided at slightly different times. Subsidence was preceded by variable amounts of gentle tilting and localized block-fault uplifts. The north-central part of the basin that was least-eroded in early Paleocene time was structurally inverted and became the locus of greatest subsidence during later Paleocene-Eocene time. Middle Paleocene coal-mires formed in the topographically lowest eastern part of the basin, but the basin center migrated to the western side by Eocene time when coal was deposited in the Coalmont district. In between, persistent lakes of variable depths characterized the central basin area, as evidenced by well-preserved deltaic facies.

Fault-fold deformation within the Colorado Headwaters Basin strongly affected the Paleocene fluvial-lacustrine deposits, as reflected in the steep limbs of anticline-syncline pairs within the McCallum fold belt and the steep margins of the Breccia Spoon syncline. Slivers of Proterozoic basement rock were also elevated on steep reverse faults in late Paleocene time along the Delaney Butte–Sheep Mountain–Boettcher Ridge structure. Eocene deposits, by and large, are only gently folded within the Colorado Headwaters Basin and thus reflect a change in deformation history.

The Paleogene deposits of the Colorado Headwaters Basin today represent only a fragment of the original extent of the depositional basin. Basal, coarse conglomerate deposits that suggest proximity to an active basin margin are relatively rare and are limited to the southern and northwestern margins of the relict basin. The northeastern margin of the preserved Paleogene section is conspicuously fine-grained, which indicates that any contemporaneous marginal uplift was far removed from the current extent of preserved fluvial-lacustrine sediments. The conspicuous basement uplifts of Proterozoic rock that flank the current relict Paleogene basin deposits are largely post-middle Eocene in age and are not associated with any Laramide synuplift fluvial deposits.

The east-west–trending Independence Mountain fault system that truncates the Colorado Headwaters Basin on the north with an uplifted Proterozoic basement block is reinterpreted in this report. Numerous prior analyses had concluded that the fault was a low-angle, south-directed Laramide thrust that overlapped the northern margin of the basin. We conclude instead that the fault is more likely a Neogene normal fault that truncates all prior structure and belongs to a family of sub-parallel west-northwest–trending normal faults that offset upper Oligocene-Miocene fluvial deposits of the Browns Park–North Park Formations.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

GSA Field Guide

Classic Concepts and New Directions: Exploring 125 Years of GSA Discoveries in the Rocky Mountain Region

Lon D. Abbott
Lon D. Abbott
Department of Geological Sciences University of Colorado Boulder, Colorado 80305 USA
Search for other works by this author on:
Gregory S. Hancock
Gregory S. Hancock
Department of Geology College of William and Mary Williamsburg, Virginia 23187 USA
Search for other works by this author on:
Geological Society of America
Volume
33
ISBN electronic:
9780813756332
Publication date:
January 01, 2013

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now