Skip to Main Content

Abstract

The Meers fault in southwestern Oklahoma, with a prominent scarp resulting from late Holocene surface displacement, is the best-expressed late Quaternary surface fault known to occur in a “stable” continental interior (or mid-plate) region (i.e., regions far removed from areas of high tectonic rates). The Meers fault is part of a major fault system that has not been the locus of major tectonic activity since the Paleozoic, and although recent surface displacements have been sizable, average late Quaternary rates have been low, based on a lack of geomorphic expression indicating significant cumulative displacement. Activity of the Meers fault is unusual, because in mid-plate regions, few large historical earthquakes have occurred and recognized cases of late Quaternary surface faulting are very rare.

Based on the extent of surface rupturing and amounts of displacement, the Meers fault appears capable of producing very large events (i.e., M > 7, or possibly even M > 7 ½). Recent events on the Meers fault produced surface displacements of a few to several meters. Such displacements are quite large, relative to the rupture length of about 40 km, and could result from a tendency for mid-plate or long-recurrence faults to rupture with higher stress drops than plate-margin or short-recurrence faults. Studies attempting to evaluate this possibility have produced conflicting results and may indicate this cannot be placed in as simple a context as plate-margin versus intraplate settings. A large earthquake on the Meers fault would produce strong ground motion throughout much of the south-central United States and could cause widespread damage. The existence of a potential source of large earthquakes in a region thought to be tectonically stable suggests that the seismic potential of this and other mid-plate regions may be underestimated.

You do not currently have access to this chapter.

Figures & Tables

Contents

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal