Skip to Main Content

A recent 1:24,000 scale mapping project within the northern Beaverhead Mountains along the Idaho-Montana border has resulted in a reinterpretation of both the Mesoproterozoic stratigraphy and the regional structural framework. A 15-km-thick stratigraphic section of the Mesoproterozoic Lemhi subbasin was initially deformed by northeast-southwest shortening into giant northwest-striking, northeast-verging folds, probably during Cretaceous Sevier orogenesis. These initial folds were then dissected by a system of subparallel and anastomosing, oblique-slip reverse, thrust, and normal faults that generally strike northwest, but that exhibit east-west–oriented lineations, suggesting components of strike-slip displacement. Contractional faulting appears to have been followed by Eocene to Miocene extensional faulting, with many normal faults following the preexisting fabrics. Extension opened Tertiary basins along some of these faults, including the Salmon Basin along the southwestern side of the Beaverhead Range. Subparallel faults in the surrounding region appear to have a similar complex history, and all appear to be part of a major northwest-striking Cretaceous fold-and-thrust belt that was later dissected by Tertiary extension. Although the faults of the Beaverhead Mountains are significant and long-lived, they are not terrane-bounding structures separating the Belt and Lemhi sedimentary sequences. Instead, Lemhi strata extend across the range and northward to Missoula, where they grade into correlative Missoula Group strata.

You do not currently have access to this chapter.

Figures & Tables

Contents

References

Related

Citing Books via

Related Articles
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal