Skip to Main Content
Book Chapter

LEMHI SUBBASIN

By
Published:
September 01, 2016

New regional mapping documents that a thick quartzite sequence in the Lemhi subbasin of the Belt-Purcell basin lies near the top of the Mesoproterozoic stratigraphic column, and that two finer-grained units have been miscorrelated. This observation requires reassessment of the subbasin's stratigraphy, which we present here. Determination of the relationships between the stratigraphic units of the Lemhi Range and Salmon River and Beaverhead Mountains and better-known Belt Supergroup units to the north has been hampered by miscorrelation of this upper quartzite sequence with older strata, and by miscorrelation of the type Apple Creek Formation with a similar but stratigraphically lower unit. The base of the upper quartzite sequence includes the Swauger and Lawson Creek Formations, which are the highest units previously identified in the Lemhi subbasin. This sequence continues upward through quartzite units described here that underlie or comprise lateral equivalents of the type Apple Creek Formation in the Lemhi Range. The spatial distribution of these quartzite units extends the Lemhi subbasin farther east and north in Montana and northwest in Idaho. The complete stratigraphy reflects the stratigraphic separation of the two “Apple Creeks” and expands the type Apple Creek Formation to accommodate the quartzite units into the regional Mesoproterozoic stratigraphy. Our proposed correlation of the thick upper quartzite sequence with the Bonner Formation and higher units of the Missoula Group in the main part of the Belt basin requires that subsidence of the Lemhi subbasin was significantly faster than that of the main part of the Belt basin during deposition of the upper Missoula Group. Therefore, the two parts of the Belt basin were distinct tectonically, although they shared common sediment sources.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

GSA Special Papers

Belt Basin: Window to Mesoproterozoic Earth

John S. MacLean
John S. MacLean
Department of Physical Science, Southern Utah University, 351 W. University Boulevard, Cedar City, Utah 84720, USA
Search for other works by this author on:
James W. Sears
James W. Sears
Department of Geosciences, University of Montana, 32 Campus Drive #1296, Missoula, Montana 59812-1296, USA
Search for other works by this author on:
Geological Society of America
Volume
522
ISBN print:
9780813725222
Publication date:
September 01, 2016

GeoRef

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal