Skip to Main Content
Book Chapter

The Yellowstone “hot spot” track results from migrating basin-range extension

By
Gillian R. Foulger
Gillian R. Foulger
Department of Earth Sciences, Durham University, Durham DH1 3LE, UK
Search for other works by this author on:
Robert L. Christiansen
Robert L. Christiansen
U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025, USA
Search for other works by this author on:
Don L. Anderson
Don L. Anderson
Seismological Laboratory, California Institute of Technology, MS 252-21, Pasadena, California 91125, USA
Search for other works by this author on:
Published:
October 01, 2015

Whether the volcanism of the Columbia River Plateau, eastern Snake River Plain, and Yellowstone (western U.S.) is related to a mantle plume or to plate tectonic processes is a long-standing controversy. There are many geological mismatches with the basic plume model as well as logical flaws, such as citing data postulated to require a deep-mantle origin in support of an “upper-mantle plume” model. USArray has recently yielded abundant new seismological results, but despite this, seismic analyses have still not resolved the disparity of opinion. This suggests that seismology may be unable to resolve the plume question for Yellowstone, and perhaps elsewhere. USArray data have inspired many new models that relate western U.S. volcanism to shallow mantle convection associated with subduction zone processes. Many of these models assume that the principal requirement for surface volcanism is melt in the mantle and that the lithosphere is essentially passive. In this paper we propose a pure plate model in which melt is commonplace in the mantle, and its inherent buoyancy is not what causes surface eruptions. Instead, it is extension of the lithosphere that permits melt to escape to the surface and eruptions to occur—the mere presence of underlying melt is not a sufficient condition. The time-progressive chain of rhyolitic calderas in the eastern Snake River Plain–Yellowstone zone that has formed since basin-range extension began at ca. 17 Ma results from laterally migrating lithospheric extension and thinning that has permitted basaltic magma to rise from the upper mantle and melt the lower crust. We propose that this migration formed part of the systematic eastward migration of the axis of most intense basin-range extension. The bimodal rhyolite-basalt volcanism followed migration of the locus of most rapid extension, not vice versa. This model does not depend on seismology to test it but instead on surface geological observations.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

GSA Special Papers

The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson

Gillian R. Foulger
Gillian R. Foulger
Department of Earth Sciences, Durham University, Durham DH1 3LE, UK
Search for other works by this author on:
Michele Lustrino
Michele Lustrino
Dipartimento di Scienze della Terra, Universita` degli Studi di Roma La Sapienza, P.le A. Moro, 5, 00185 Roma, Italy
Search for other works by this author on:
Scott D. King
Scott D. King
Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA
Search for other works by this author on:
Geological Society of America
Volume
514
ISBN print:
9780813725147
Publication date:
October 01, 2015

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

Related Articles
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal