Skip to Main Content
Book Chapter

Stochastic exploration and the geologic context of enhanced geothermal system viability on the Snake River Plain, Idaho

By
Alex Moody
Alex Moody
Department of Geological Sciences, University of Idaho, 875 Perimeter Drive, MS 3022, Moscow, Idaho 83844, USA
Search for other works by this author on:
Jerry Fairley
Jerry Fairley
Department of Geological Sciences, University of Idaho, 875 Perimeter Drive, MS 3022, Moscow, Idaho 83844, USA
Search for other works by this author on:
Mitchell Plummer
Mitchell Plummer
Earth Resources Recovery and Sustainability, Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, Idaho, USA
Search for other works by this author on:
Published:
March 01, 2016

Geothermal energy depends on high subsurface temperature, adequate permeability and fracture volume, and accessible groundwater supply to support heat exchange with surrounding rock. Some regions may have adequate thermal resources but lack the necessary permeability or deep circulating water. Exploitation of such areas for geothermal energy could occur if permeability can be enhanced enough to provide the necessary heat exchange. These improvements to the geothermal reservoir would produce what is termed an “enhanced geothermal system” (EGS). The Snake River Plain (SRP) in southern Idaho is a geological region with high heat flux (~110 mW/m2) that has been recommended as an EGS target. In this study, we consider how the geologic and thermal history of the SRP might influence its EGS potential. We describe the fracture distribution (mean = 28.63 fractures/10 m) in a welded tuff core recovered from one of the few deep boreholes located on the SRP and provide a preliminary discussion of the likely geomechanical behavior under in situ stress. Spatial autocorrelation of fracture features is defined with geostatistical techniques and used in a stochastic simulation of possible structures in other welded tuff reservoirs. Autocorrelation scales for the continuous date are on the order of 70 meters with high subsample scale variability (56 m). Results should aid in designing criteria for a hydraulic fracturing plan that would augment the permeability and connectivity of an SRP reservoir's preexisting fracture network.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Special Papers

Geothermal Energy: An Important Resource

Gordon R. Osinski
Gordon R. Osinski
Centre for Planetary Science and Exploration, Departments of Earth Sciences and Physics and Astronomy, University of Western Ontario, 1151 Richmond St., London, ON N6A 3K7, Canada
Search for other works by this author on:
David A. Kring
David A. Kring
Center for Lunar Science and Exploration, Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas 77058, USA, and National Aeronautics and Space Administration (NASA) Lunar Science Institute, and NASA Solar System Exploration Research Virtual Institute
Search for other works by this author on:
Geological Society of America
Volume
519
ISBN print:
9780813725192
Publication date:
March 01, 2016

References

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal