Skip to Main Content
Book Chapter

Thermal conductivity, thermal gradient, and heat-flow estimations for the Smackover Formation, southwest Arkansas

By
Lea M. Nondorf
Lea M. Nondorf
Arkansas Geological Survey, 3815 West Roosevelt Road, Little Rock, Arkansas 72204, USA
Search for other works by this author on:
Published:
March 01, 2016

Subsurface thermal conductivity, thermal gradient, and heat flow are significant parameters when determining the feasibility of utilizing a geologic unit to generate industrial geothermal power. Cores from 18 wells of the subsurface Jurassic Smackover Formation in southwest Arkansas were analyzed at the Arkansas Geological Survey, where thermal conductivity, thermal gradient, and heat-flow values were estimated. Thermal conductivity of several samples was obtained using a KD2 Pro Thermal Analyzer at room temperature. Thermal gradients were estimated from Smackover Formation borehole temperatures, and heat-flow values were calculated from thermal conductivity and thermal gradient values. Average thermal conductivity values for the Smackover Formation are greatest in northeastern Lafayette County at 2.57 W/m·K, followed by southern Columbia and western Calhoun Counties at 2.47 W/m·K each. Northwestern Columbia and northeastern Lafayette Counties exhibit the highest thermal gradient and heat flow, with values averaging 3.51 °C/100 m and 72.3 mW/m2, respectively. Interpretation of these parameters confirms that this area exhibits the highest geothermal potential for the Smackover Formation in southwest Arkansas. Investigations further characterizing the Smackover Formation, including in situ thermal properties and borehole temperature measurements, are recommended for future geothermal feasibility studies.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Special Papers

Geothermal Energy: An Important Resource

Gordon R. Osinski
Gordon R. Osinski
Centre for Planetary Science and Exploration, Departments of Earth Sciences and Physics and Astronomy, University of Western Ontario, 1151 Richmond St., London, ON N6A 3K7, Canada
Search for other works by this author on:
David A. Kring
David A. Kring
Center for Lunar Science and Exploration, Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, Texas 77058, USA, and National Aeronautics and Space Administration (NASA) Lunar Science Institute, and NASA Solar System Exploration Research Virtual Institute
Search for other works by this author on:
Geological Society of America
Volume
519
ISBN print:
9780813725192
Publication date:
March 01, 2016

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal