Skip to Main Content
Book Chapter

Deccan volcanism, the Chicxulub impact, and the end-Cretaceous mass extinction: Coincidence? Cause and effect?

By
Gerta Keller
Gerta Keller
Geosciences Department, Princeton University, Princeton, New Jersey 08544, USA
Search for other works by this author on:
Published:
September 2014

The recent discovery of the direct link between Deccan volcanism and the end-Cretaceous mass extinction also links volcanism to the late Maastrichtian rapid global warming, high environmental stress, and the delayed recovery in the early Danian. In comparison, three decades of research on the Chicxulub impact have failed to account for long-term climatic and environmental changes or prove a coincidence with the mass extinction. A review of Deccan volcanism and the best age estimate for the Chicxulub impact provides a new perspective on the causes for the end-Cretaceous mass extinction and supports an integrated Deccan-Chicxulub scenario. This scenario takes into consideration climate warming and cooling, sea-level changes, erosion, weathering, ocean acidification, high-stress environments with opportunistic species blooms, the mass extinction, and delayed postextinction recovery.

The crisis began in C29r (upper CF2 to lower CF1) with rapid global warming of 4 °C in the oceans and 8 °C on land, commonly attributed to Deccan phase 2 eruptions. The Chicxulub impact occurred during this warm event (about 100–150 k.y. before the mass extinction) based on the stratigraphically oldest impact spherule layer in NE Mexico, Texas, and Yucatan crater core Yaxcopoil-1. It likely exacerbated climate warming and may have intensified Deccan eruptions. The reworked spherule layers at the base of the sandstone complex in NE Mexico and Texas were deposited in the upper half of CF1, ~50–80 k.y. before the Cretaceous-Tertiary (K-T) boundary. This sandstone complex, commonly interpreted as impact tsunami deposits of K-T boundary age, was deposited during climate cooling, low sea level, and intensified currents, leading to erosion of nearshore areas (including Chicxulub impact spherules), transport, and redeposition via submarine channels into deeper waters. Renewed climate warming during the last ~50 k.y. of the Maastrichtian correlates with at least four rapid, massive volcanic eruptions known as the longest lava flows on Earth that ended with the mass extinction, probably due to runaway effects. The kill mechanism was likely ocean acidification resulting in the carbonate crisis commonly considered to be the primary cause for four of the five Phanerozoic mass extinctions.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

GSA Special Papers

Volcanism, Impacts, and Mass Extinctions: Causes and Effects

Edited by
Gerta Keller
Gerta Keller
Department of Geosciences, Princeton University, Princeton, New Jersey 08544, USA
Search for other works by this author on:
Andrew C. Kerr
Andrew C. Kerr
School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, UK
Search for other works by this author on:
Geological Society of America
Volume
505
ISBN print:
9780813725055
Publication date:
2014

References

Related

A comprehensive resource of eBooks for resources in the Earth Sciences

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now