Skip to Main Content
Book Chapter

Timing and spatial patterns of basin segmentation and climate change in northeastern Tibet

By
Brian G. Hough
Brian G. Hough
Department of Geosciences, Hamilton College, Clinton, New York 13323, USA
Search for other works by this author on:
Carmala N. Garzione
Carmala N. Garzione
Department of Earth and Environmental Sciences, University of Rochester, Rochester, New York 14627, USA
Search for other works by this author on:
Zhicai Wang
Zhicai Wang
State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China
Search for other works by this author on:
Richard O. Lease
Richard O. Lease
Department of Earth Science, University of California–Santa Barbara, Santa Barbara, California 93106, USA
Search for other works by this author on:
Published:
August 01, 2014

Spatiotemporal patterns of Cenozoic deformation along the margins of the Tibetan Plateau can provide key evidence with which to investigate the mechanisms of continental deformation and plateau growth as well as their impact on regional climate. Along the northeastern margin of the Tibetan Plateau, Cenozoic deformation and regional aridification have been attributed to the upward and outward growth of the plateau. Analysis of stratigraphic and stable isotopic data shows that, in early to middle Miocene time, intracontinental mountain ranges subdivided a broad foreland basin, which developed on the northern margin of the Tibetan Plateau shortly after collision between India and Eurasia, into smaller intramontane basins. Stratigraphic and stable isotope data collected from a number of subbasins along the northeastern Tibetan Plateau, spanning as much as 30 m.y. in age and ranging to 3 km in thickness, reveal a pattern of deformation and basin isolation that began ca. 22 Ma with the initial unroofing of the eastern Laji Shan near the town of Minhe and partially separated the Xining basin from the Hualong, Linxia, and Xunhua basins to the south. Westward paleoflow indicators on the eastern margin of the Guide basin indicate that the Zamazari Shan had attained topographic relief by ca. 20 Ma and separated the Guide basin from the Jian Zha, Hualong, and Xunhua basins to the east. Deformation of the Laji Shan–Jishi Shan progressed to the south, deforming the Jishi Shan ca. 13 Ma and separating the Linxia Basin from the Hualong and Xunhua basins to the west. Final separation between the Jian Zha and Xining basins occurred at 10–8 Ma with the growth of the western Laji Shan and Riyue Shan. Unique stable isotope records reflect the different hydrologic and tectonic settings of each basin and highlight the importance of local climate conditions in each basin. However, ca. 14 Ma all basins underwent a synchronous change in climate toward more arid conditions, as indicated by a gradual to abrupt positive shift in δ18O values. This climate event corresponds with aridification events to the west near the Qaidam basin and may be related to the reorganization of vapor transport pathways around a growing eastern Tibetan Plateau.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

GSA Special Papers

Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau

Junsheng Nie
Junsheng Nie
MOE Key Laboratory of Western China's Environmental Systems, Collaborative Innovation Centre for Arid Environments and Climate Change, Lanzhou University, 222 South Tianshui Road, Lanzhou, Gansu 730000, China
Search for other works by this author on:
Brian K. Horton
Brian K. Horton
Institute for Geophysics and Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, USA
Search for other works by this author on:
Gregory D. Hoke
Gregory D. Hoke
Department of Earth Sciences, Syracuse University, Syracuse, New York 13244, USA
Search for other works by this author on:
Geological Society of America
Volume
507
ISBN print:
9780813725079
Publication date:
August 01, 2014

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now