Skip to Main Content

Newly generated and previously published strontium isotope signatures of plagioclase phenocrysts in Columbia River Basalt Group lavas exhibit heterogeneity largely imposed by mantle-derived magmas assimilating variable crustal rocks. Steens basalts assimilated accreted terrane crust with 87Sr/86Sr ratios of <0.7040. In contrast, Imnaha, Grande Ronde, Wanapum, and Saddle Mountains basalts likely assimilated crust with more radiogenic Sr (>0.7040) including a cratonic component, perhaps as a result of residence in magma chambers partly located east of the 87Sr/86Sr = 0.7060 line. Strontium isotope ratios in plagioclase phenocrysts from early- erupted Imnaha basalts anticipate whole-rock signatures of later-erupted Grande Ronde basalts consistent with a geochemical continuum between the two formations, which is also seen in whole-rock trace element abundances, undermining the notion of an abrupt change in the magma sources generating Imnaha and Grande Ronde basalts.

You do not currently have access to this chapter.

Figures & Tables

Contents

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal