Skip to Main Content

Conventional archaeological excavation methods are, by design, extremely invasive and result in culturally sensitive areas being irrevocably altered. For this reason, near-surface geophysical techniques have been incorporated into archaeological investigations to aid in locating buried features and developing specific excavation plans with minimal damage to the sites. The objective of our research was to conduct a geophysical surveying campaign at a test site in Knoxville, Tennessee, to develop a workflow for an improved data management methodology that would be applied to data acquired at an active archaeological site in Cyprus.

A multi-tool geophysical survey was completed as a first case study at a control site with known subsurface features on the University of Tennessee Agricultural Campus using both ground penetrating radar and magnetic gradiometry. Using real-time differential corrected GPS data, we systematically imported the images into Google Earth as accurately georeferenced overlays on existing topographic maps and air photos. We added placemarks where we interpreted subsurface anomalies based on the data, exported waypoints for the features into spreadsheet software, and correlated the results to the known locations. We next tested this methodology with data from an active archaeological site in southern Cyprus. Data were displayed in Google Earth and accurate GPS coordinates for features were exported into a spreadsheet file. We were able to share a tested, easily accessible final product that was immediately useful and accessible to the archaeologists on the team and the broader archaeological community.

You do not currently have access to this chapter.

Figures & Tables

Contents

References

Related

Citing Books via

Related Book Content
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal