Skip to Main Content
Book Chapter

The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE): Probing the transition from continental rifting to incipient seafloor spreading

By
Ian D. Bastow
Ian D. Bastow
Department of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK
Search for other works by this author on:
Derek Keir
Derek Keir
School of Earth and the Environment, University of Leeds, Leeds, LS2 9JT, UK
Search for other works by this author on:
Eve Daly
Eve Daly
Department of Earth and Ocean Sciences, National University of Ireland, Galway, Ireland
Search for other works by this author on:
Published:
June 01, 2011

The Miocene–Holocene East African Rift in Ethiopia is unique worldwide because it subaerially exposes the transition between continental rifting and seafloor spreading within a young continental flood basalt province. As such, it is an ideal study locale for continental breakup processes and hotspot tectonism. Here, we review the results of a recent multidisciplinary, multi-institutional effort to understand geological processes in the region: the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE). In 2001–2003, dense broadband seismological networks probed the structure of the upper mantle, while controlled-source wide-angle profiles illuminated both along-axis and across-rift crustal structure of the Main Ethiopian Rift. These seismic experiments, complemented by gravity and magnetotelluric surveys, provide important constraints on variations in rift structure, deformation mechanisms, and melt distribution prior to breakup. Quaternary magmatic zones at the surface within the rift are underlain by high-velocity, dense gabbroic intrusions that accommodate extension without marked crustal thinning. A magnetotelluric study illuminated partial melt in the Ethiopian crust, consistent with an overarching hypothesis of magma-assisted rifting. Mantle tomographic images reveal an ~500-km-wide low-velocity zone at ≥75 km depth in the upper mantle that extends from close to the eastern edge of the Main Ethiopian Rift westward beneath the uplifted and flood basalt–capped NW Ethiopian Plateau. The low-velocity zone does not interact simply with the Miocene–Holocene (rifting-related) base of lithosphere topography, but it provides an abundant source of partially molten material that assists extension of the seismically and volcanically active Main Ethiopian Rift to the present day.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

GSA Special Papers

Volcanism and Evolution of the African Lithosphere

Luigi Beccaluva
Luigi Beccaluva
Dipartimento di Scienze della Terra, Università di Ferrara, Italy
Search for other works by this author on:
Gianluca Bianchini
Gianluca Bianchini
Dipartimento di Scienze della Terra, Università di Ferrara, Italy
Search for other works by this author on:
Marjorie Wilson
Marjorie Wilson
School of Earth & Environment, The University of Leeds, Leeds, UK
Search for other works by this author on:
Geological Society of America
Volume
478
ISBN print:
9780813724782
Publication date:
June 01, 2011

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now