Skip to Main Content
Book Chapter

A petrographic and fluid inclusion assessment of hydrothermal alteration of some impactites and crystalline rocks in the Chesapeake Bay impact structure, ICDP-USGS Eyreville B core

By
David A. Vanko
David A. Vanko
Department of Physics, Astronomy & Geosciences, Towson University, Towson, Maryland 21252, USA
Search for other works by this author on:
Published:
January 01, 2009

Core samples from the International Continental Scientific Drilling Program (ICDP)–U.S Geological Survey (USGS) Eyreville B core, located in the central crater of the Chesapeake Bay impact structure, were studied to determine the degree to which postimpact hydrothermal activity is recorded in secondary minerals and fluid inclusions. The Chesapeake Bay impact event occurred ~35 Ma ago on the siliciclastic continental shelf of eastern North America, in up to several hundred meters of water. The combination of hot materials, such as impact melts and suevite breccias, with overlying crater-fill material and seawater is hypothesized to have led to postimpact hydrothermal circulation. Secondary minerals are distinguished from pre-impact minerals by textural features such as the presence or absence of shock metamorphic effects. Minerals in veins and cavities that are shown to have formed after the impact include secondary calcite, chalcedony, phillipsite, clinoptilolite-heulandite, mordenite, and montmorillonite. Some secondary calcite contains liquid-only fluid inclusions with trapping temperatures constrained to be less than or equal to ~50 °C. Salinities of the inclusion fluids are mostly around 4.3 ± 1 wt% NaCl equivalent, or ~43 ± 10 g/L total dissolved solids. This salinity is similar to that of the anomalously saline groundwater that currently exists within the crater-fill material, and that could be relict brine that originated just after the impact.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Special Papers

The ICDP-USGS Deep Drilling Project in the Chesapeake Bay impact structure: Results from the Eyreville Core Holes

Gregory S. Gohn
Gregory S. Gohn
U.S. Geological Survey, Reston, Virginia, USA
Search for other works by this author on:
Christian Koeberl
Christian Koeberl
Department of Earth & Planetary Sciences, Rutgers University, USA
Search for other works by this author on:
Kenneth G. Miller
Kenneth G. Miller
Museum für Naturkunde–Leibniz Institute at Humboldt University Berlin, Germany
Search for other works by this author on:
Wolf Uwe Reimold
Wolf Uwe Reimold
Museum für Naturkunde–Leibniz Institute at Humboldt University Berlin, Germany
Search for other works by this author on:
Geological Society of America
Volume
458
ISBN print:
9780813724584
Publication date:
January 01, 2009

References

Related

Citing Books via

A comprehensive resource of eBooks for researchers in the Earth Sciences

Related Articles
Related Book Content
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal