Skip to Main Content
Book Chapter

Geochemical characteristics of basement target rocks, suevitic glasses from the Eyreville B drill core, Chesapeake Bay impact structure, and three bediasites

By
Roman Skála
Roman Skála
Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, Burgweg 11, D-07749 Jena, Germany
Search for other works by this author on:
Falko Langenhorst
Falko Langenhorst
Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany
Search for other works by this author on:
Alex Deutsch
Alex Deutsch
Institut für Planetologie, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Strasse 10, D-48149 Münster, Germany
Search for other works by this author on:
Published:
January 01, 2009

The International Continental Scientific Drilling Program (ICDP)–U.S. Geological Survey (USGS) Eyreville B core hole, drilled into the 35.5-Ma-old Chesapeake Bay impact crater, Virginia, has recovered postimpact sediments, crater-fill breccias, megablocks of the crystalline basement, and suevites with fresh glass shards. Bulk rock analyses of 2 glass shards, 21 crystalline target rocks, and microchemical analyses of 7 glass shards and 3 bediasites (tektites of the North American strewn field) were performed in order to contribute to the understanding of formation processes and to better constrain the precursor materials of these glasses as well as of the bediasites. Statistical treatment (hierarchical cluster analyses) yielded an assignment of the data for the crystalline basement samples into four groups; two of those (various schists, meta-graywackes, and gneisses) display characteristics similar to the impact glasses in the suevites and the bediasites. However, the suevitic glasses show a broad range in composition at the micrometer scale. These data show the frequent presence of schlieren, and in particular, enhanced TiO2contents that require admixture of an “amphibolitic component” to the melt. Evidence for such a process is provided by the occurrence of relict, in-part thermally corroded grains of rutile and ilmenite, and by formation of Ti-rich tiny mineral aggregates in the glass. The three studied bediasites show only minor inter- and intrasample heterogeneity, and their chemical composition agrees well with previously published data. The new data for the bediasites are compatible with heating of the “tektite melt” to extreme temperatures, followed by quenching.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

GSA Special Papers

The ICDP-USGS Deep Drilling Project in the Chesapeake Bay impact structure: Results from the Eyreville Core Holes

Gregory S. Gohn
Gregory S. Gohn
U.S. Geological Survey, Reston, Virginia, USA
Search for other works by this author on:
Christian Koeberl
Christian Koeberl
Department of Earth & Planetary Sciences, Rutgers University, USA
Search for other works by this author on:
Kenneth G. Miller
Kenneth G. Miller
Museum für Naturkunde–Leibniz Institute at Humboldt University Berlin, Germany
Search for other works by this author on:
Wolf Uwe Reimold
Wolf Uwe Reimold
Museum für Naturkunde–Leibniz Institute at Humboldt University Berlin, Germany
Search for other works by this author on:
Geological Society of America
Volume
458
ISBN print:
9780813724584
Publication date:
January 01, 2009

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

Related Articles
Related Book Content
This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now