Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville B core, Chesapeake Bay impact structure, USA
- Share
-
Tools
Gabrielle N. Townsend, Roger L. Gibson, J. Wright Horton, Jr., Wolf Uwe Reimold, Ralf T. Schmitt, Katerina Bartosova, 2009. "Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville B core, Chesapeake Bay impact structure, USA", The ICDP-USGS Deep Drilling Project in the Chesapeake Bay impact structure: Results from the Eyreville Core Holes, Gregory S. Gohn, Christian Koeberl, Kenneth G. Miller, Wolf Uwe Reimold
Download citation file:
×
The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ± fibrolite ± garnet ± tourmaline ± pyrite ± rutile ± pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite-K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase-quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ± biotite ± garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ± muscovite ± pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ± epidote ± amphibole.
The lower basement-derived section and both megablocks exhibit similar middle- to upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafic source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites.
Figures & Tables
Contents
The ICDP-USGS Deep Drilling Project in the Chesapeake Bay impact structure: Results from the Eyreville Core Holes

GeoRef
- absolute age
- amphibolites
- Ar/Ar
- basement
- chemical composition
- chemical ratios
- Chesapeake Bay impact structure
- cores
- electron probe data
- genesis
- granites
- igneous rocks
- International Continental Scientific Drilling Program
- lithostratigraphy
- metamorphic rocks
- mineral composition
- Northampton County Virginia
- Paleozoic
- petrography
- plutonic rocks
- provenance
- U/Pb
- United States
- Virginia
- Eyreville Farm