Skip to Main Content

The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)–USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20–30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal