Skip to Main Content
Book Chapter

Geologic columns for the ICDP-USGS Eyreville A and B cores, Chesapeake Bay impact structure: Sediment-clast breccias, 1096 to 444 m depth

By
L.E. Edwards
L.E. Edwards
U.S. Geological Survey, 926A National Center, Reston, Virginia 20192, USA
Search for other works by this author on:
D.S. Powars
D.S. Powars
U.S. Geological Survey, 926A National Center, Reston, Virginia 20192, USA
Search for other works by this author on:
G.S. Gohn
G.S. Gohn
U.S. Geological Survey, 926A National Center, Reston, Virginia 20192, USA
Search for other works by this author on:
H. Dypvik
H. Dypvik
University of Oslo, P.O. Box 1047, Blindern, N-0316 Oslo, Norway
Search for other works by this author on:
Published:
January 01, 2009

The Eyreville A and B cores, recovered from the “moat” of the Chesapeake Bay impact structure, provide a thick section of sediment-clast breccias and minor stratified sediments from 1095.74 to 443.90 m. This paper discusses the components of these breccias, presents a geologic column and descriptive lithologic framework for them, and formalizes the Exmore Formation. From 1095.74 to ~867 m, the cores consist of nonmarine sediment boulders and sand (rare blocks up to 15.3 m intersected diameter). A sharp contact in both cores at ~867 m marks the lowest clayey, silty, glauconitic quartz sand that constitutes the base of the Exmore Formation and its lower diamicton member. Here, material derived from the upper sediment target layers, as well as some impact ejecta, occurs. The block-dominated member of the Exmore Formation, from ~855–618.23 m, consists of nonmarine sediment blocks and boulders (up to 45.5 m) that are juxtaposed complexly. Blocks of oxidized clay are an important component. Above 618.23 m, which is the base of the informal upper diamicton member of the Exmore Formation, the glauconitic matrix is a consistent component in diamicton layers between nonmarine sediment clasts that decrease in size upward in the section. Crystalline-rock clasts are not randomly distributed but rather form local concentrations. The upper part of the Exmore Formation consists of crudely fining-upward sandy packages capped by laminated silt and clay. The overlap interval of Eyreville A and B (940–~760 m) allows recognition of local similarities and differences in the breccias.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Special Papers

The ICDP-USGS Deep Drilling Project in the Chesapeake Bay impact structure: Results from the Eyreville Core Holes

Gregory S. Gohn
Gregory S. Gohn
U.S. Geological Survey, Reston, Virginia, USA
Search for other works by this author on:
Christian Koeberl
Christian Koeberl
Department of Earth & Planetary Sciences, Rutgers University, USA
Search for other works by this author on:
Kenneth G. Miller
Kenneth G. Miller
Museum für Naturkunde–Leibniz Institute at Humboldt University Berlin, Germany
Search for other works by this author on:
Wolf Uwe Reimold
Wolf Uwe Reimold
Museum für Naturkunde–Leibniz Institute at Humboldt University Berlin, Germany
Search for other works by this author on:
Geological Society of America
Volume
458
ISBN print:
9780813724584
Publication date:
January 01, 2009

References

Related

Citing Books via

Related Book Content
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal