Skip to Main Content
Skip Nav Destination

We investigated the field relations, metamorphic and deformation conditions, age, and chemistry of basaltic, plutonic, and metamorphic blocks in the Mineoka ophiolite mélange belt, Boso Peninsula, central Japan, to clarify their emplacement mechanisms. We considered internal and external deformation of the blocks in the context of the complicated processes by which the ophiolite mélange belt was formed in a forearc setting. A two-stage history leading to the present-day forearc sliver fault zone was revealed: an early stage of deep ductile deformation followed by an episode of brittle deformation at shallower levels. Both stages were the result of transpressional stress conditions. The first stage produced subduction-related schistosity with microfolding and mylonitization and then brecciation during exhumation in the intraoceanic subduction zone, from a maximum depth of garnet-amphibolite facies or eclogitic facies. The second stage was characterized by strong, brittle shear deformation as the rocks were incorporated into the present-day fault zone. The first incorporation of the oceanic plate to the side of the Honshu arc might have occurred during the Miocene, and was followed by right-lateral oblique subduction that has continued ever since the Boso triple junction arrived at its present-day position, thus forming the paleo-Sagami trough plate boundary.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal