Skip to Main Content
Book Chapter

Zoning and resorption of plagioclase in a layered gabbro, as a petrographic indicator of magmatic differentiation

By
Takashi Hoshide
Takashi Hoshide
Division of Earth and Planetary Sciences, Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kyoto, Japan 606–8502, Email: hoshide@kueps.kyoto-u.ac.jp; obata@kueps.kyoto-u.ac.jp
Search for other works by this author on:
Masaaki Obata
Masaaki Obata
Division of Earth and Planetary Sciences, Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kyoto, Japan 606–8502, Email: hoshide@kueps.kyoto-u.ac.jp; obata@kueps.kyoto-u.ac.jp
Search for other works by this author on:
Published:
October 01, 2010

The Murotomisaki Gabbroic Intrusion is a sill-like layered gabbro emplaced in sedimentary strata of Tertiary age in southwest Japan. The zoning (including resorption structures) and the compositional variations of plagioclase from throughout the intrusion were studied, and it was found that the zoning pattern may be classified into four types, which may well correlated with the hosting rock types, the mode of occurrences and their stratigraphic positions in the intrusion. The plagioclase zoning was successfully decoded, and the sequence of events that took place during the magmatic differentiation was deduced and further interpreted in the context of a stratified basal boundary layer slowly ascending in a solidifying magma body. It was shown that various layered structures – modal layering, podiform gabbroic pegmatites and anorthositic layers – observed in the Murotomisaki Gabbro were formed within the moving basal boundary layer by flushing of H2O-rich fluid and fractionated silicate melts from below. By the fluxing of hydrous fluids, plagioclase crystals preferentially dissolved and then melt fraction increased in the basal boundary layer. Under these circumstances, plagioclase-rich fractionated melts diapirically segregated from the crystal pile. Calcic plagioclases, which are out of equilibrium in the central part of the intrusion, may have originated from the basal boundary layer in this manner.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Special Papers

Sixth Hutton Symposium on The Origin of Granites and Related Rocks: Proceedings of a Symposium held in Stellenbosch, South Africa, 2- 6 July 2007

John D. Clemens
John D. Clemens
Department of Earth Sciences, University of Stellenbosch, South Africa
Search for other works by this author on:
Colin Donaldson
Colin Donaldson
EESTRSE Editor:
Search for other works by this author on:
Carol D. Frost
Carol D. Frost
Guest Editors:
Search for other works by this author on:
Alexander F.M. Kisters
Alexander F.M. Kisters
Guest Editors:
Search for other works by this author on:
Jean-François Moyen
Jean-François Moyen
Guest Editors:
Search for other works by this author on:
Tracy Rushmer
Tracy Rushmer
Guest Editors:
Search for other works by this author on:
Gary Stevens
Gary Stevens
Guest Editors:
Search for other works by this author on:
Geological Society of America
Volume
472
ISBN print:
9780813724720
Publication date:
October 01, 2010

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal