Skip to Main Content
Book Chapter

Similarities between mantle-derived A-type granites and voluminous rhyolites in continental flood basalt provinces

By
Simon Turner
Simon Turner
GEMOC, Department of Earth and Planetary Sciences, Macquarie University, Sydney NSW 2109, Australia, Email: sturner@els.mq.edu.au; trushmer@els.mq.edu.au
Search for other works by this author on:
Tracy Rushmer
Tracy Rushmer
GEMOC, Department of Earth and Planetary Sciences, Macquarie University, Sydney NSW 2109, Australia, Email: sturner@els.mq.edu.au; trushmer@els.mq.edu.au
Search for other works by this author on:
Published:
October 01, 2010

Many continental flood basalt provinces contain rhyolites with ‘A-type’ compositions and many studies have concluded that these higher silica rocks are crustal melts from metapelitic or tonalitic country rock. However, although many of the low-Ti continental flood basalt sequences exhibit a marked a silica gap from ~55–65 wt.% SiO2, many incompatible element ratios, and the calculated eruption temperatures (950–1100°C) are strikingly similar between the rhyolites and associated basalts. Using experimental evidence, derivation of the low-Ti rhyolites from a basaltic parent is shown to be a viable alternative to local crustal melting. Comparison of liquid compositions from experimental melting of both crustal and mantle-derived (basaltic) source materials allows the two to be distinguished on the basis of Al2O3 and FeO content. The basalt experiments are reversible, such that the same melts can be produced by melting or crystallisation. The effect of increased water content in the source is also detectable in the liquid composition. The majority of rhyolites from continental flood basalt provinces fall along the experimental trend for basalt melting/crystallisation at relatively low water content. The onset of the silica gap in the rhyolites is accompanied by an abrupt decrease in TiO2 and FeO*, marking the start of Fe–Ti oxide crystallisation. Differentiation from 55–65 wt.% SiO2 requires ~30% fractional crystallisation in which magnetite is an important phase, sometimes accompanied by limited crustal contamination. The rapid increase in silica occurs over a small temperature interval and for relatively small changes in the amount of fractional crystallisation, thus intermediate compositions are less likely to be sampled. It is argued that the presence of a silica gap is not diagnostic of a crustal melting origin for either A-type granites or rhyolites in continental flood basalt provinces. The volume of these rhyolites erupted over the Phanerozoic is significant and models for crustal growth should take this substantial contribution from the mantle into account.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Special Papers

Sixth Hutton Symposium on The Origin of Granites and Related Rocks: Proceedings of a Symposium held in Stellenbosch, South Africa, 2- 6 July 2007

John D. Clemens
John D. Clemens
Department of Earth Sciences, University of Stellenbosch, South Africa
Search for other works by this author on:
Colin Donaldson
Colin Donaldson
EESTRSE Editor:
Search for other works by this author on:
Carol D. Frost
Carol D. Frost
Guest Editors:
Search for other works by this author on:
Alexander F.M. Kisters
Alexander F.M. Kisters
Guest Editors:
Search for other works by this author on:
Jean-François Moyen
Jean-François Moyen
Guest Editors:
Search for other works by this author on:
Tracy Rushmer
Tracy Rushmer
Guest Editors:
Search for other works by this author on:
Gary Stevens
Gary Stevens
Guest Editors:
Search for other works by this author on:
Geological Society of America
Volume
472
ISBN print:
9780813724720
Publication date:
October 01, 2010

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal