Skip to Main Content

During the roughly year-long Seismic Wave Exploration in the Lower Lithosphere (SWELL) pilot experiment in 1997/1998, eight ocean bottom instruments deployed to the southwest of the Hawaiian Islands recorded teleseismic Rayleigh waves with periods between 15 and 70 s. Such data are capable of resolving structural variations in the oceanic lithosphere and upper asthenosphere and therefore help understand the mechanism that supports the Hawaiian Swell relief. The pilot experiment was a technical as well as a scientific feasibility study and consisted of a hexagonal array of Scripps Low-Cost Hardware for Earth Applications and Physical Oceanography (L-CHEAPO) instruments using differential pressure sensors. The analysis of eighty-four earthquakes provided numerous high-precision phase velocity curves over an un-precedentedly wide period range. We find a rather uniform (unaltered) lid at the top of the lithosphere that is underlain by a strongly heterogeneous lower lithosphere and upper asthenosphere. Strong slow anomalies appear within ∼300 km of the island chain and indicate that the lithosphere has most likely been altered by the same process that causes the Hawaiian volcanism. The anomalies increase with depth and reach well into the asthenosphere, suggesting a sublithospheric dynamic source for the swell relief. The imaged velocity variations are consistent with thermal rejuvenation, but our array does not appear to have covered the melt-generating region of the Hawaiian hotspot.

You do not currently have access to this chapter.

Figures & Tables

Contents

References

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal