Skip to Main Content
Book Chapter

Carbonate-platform facies in volcanic-arc settings: Characteristics and controls on deposition and stratigraphic development

By
Steven L. Dorobek
Steven L. Dorobek
Department of Geology & Geophysics, Texas A&M University, College Station, Texas 77843, USA
Search for other works by this author on:
Published:
January 01, 2008

Shallow-marine carbonate facies from volcanic-arc settings provide an important, but commonly overlooked, record of relative sea-level change, differential subsidence-uplift, paleoclimate trends, and other environmental changes. Carbonate strata are thin where volcanic eruptions are frequent and voluminous, unless shallow, bathy-metric highs persist for long periods of time and volcaniclastic sediment and erupted materials are trapped in adjacent depocenters. Carbonate platforms and reefs can attain significant thickness, however, if subsidence continues after volcanic activity ceases or the volcanic front migrates. The areal extent of shallow-marine carbonate sedimentation is likewise affected by differential tectonic subsidence, although carbonate platforms are most laterally extensive during transgressive to highstand conditions and when arc depocenters are filled with sediment.

Tectonic controls on shallow-marine carbonate sedimentation in arc depocenters include (1) coseismic fault displacements and associated surface deformation; (2) long-wavelength tectonic subsidence related to dynamic mantle flow, flexure, lithospheric thinning, and thermal subsidence; and (3) large-scale plate deformation related to local conditions of subduction.

Depositional controls on carbonate sedimentation in arc depocenters include (1) the frequency, volume, and style of volcanic eruptions; (2) accumulation rates for siliciclastic-volcaniclastic sediment; (3) the frequency, volume, and dispersal paths of erupted material; (4) (paleo)wind direction, which influences both carbonate facies development directly and indirectly by controlling the dispersal of volcanic ash and other pyroclastic sediment, which can bury carbonate-producing organisms; (5) the frequency and intensity of tsunami events; and (6) volcanically or seismically triggered mass-wasting events, which can erode or bury carbonate strata.

Regarding platform morphologies in arc-related settings, (1) fringing reefs or barrier reef systems with lagoons may develop around volcanic edifices throughout the long-term evolution of volcanic arcs; (2) local reefs and mounds may build on intrabasinal, fault-bounded highs within underfilled forearc, intra-arc, and backarc basins; (3) isolated platforms with variable platform margin-to-basin transitions are common in “underfilled” and tectonically active depocenters; and (4) broad ramps and rimmed carbonate shelves are typically found in tectonically mature and sediment-filled depocenters.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Special Papers

Formation and Applications of the Sedimentary Record in Arc Collision Zones

Amy E. Draut
Amy E. Draut
Search for other works by this author on:
Peter. D. Clift
Peter. D. Clift
Search for other works by this author on:
David W. Scholl
David W. Scholl
Search for other works by this author on:
Geological Society of America
Volume
436
ISBN print:
9780813724362
Publication date:
January 01, 2008

References

Related

Citing Books via

A comprehensive resource of eBooks for researchers in the Earth Sciences

Related Articles
Related Book Content
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal