Skip to Main Content

Western Anatolia, one of the world's best-known extensional terrains, is characterized by the presence of several moderate- to high-enthalpy geothermal fields. Geothermal fluids have helium isotope compositions reflecting mixing between mantle and crustal helium components, the former ranging between 0.58% and 45% of the total helium in a given sample. Regarding the distribution of heat and mantle He and their correlation with tectonic structure and volcanism in western Anatolia, the prominent features are as follows: (1) the association between highest heat and highest 3He lies along the eastern segment of the Büyük Menderes graben, (2) the high heat and high 3He occur in the vicinity of the Quaternary Kula volcanism, (3) high-enthalpy fields exist in close vicinity to the young alkaline volcanics, (4) relatively high mantle He contributions occur in areas of not only the young alkaline, but also the old calc-alkaline volcanics, and (5) there is a lack of volcanic exposures along the Büyük Menderes graben (except at its western and southeastern terminations), where the highest values are recorded for both heat and helium. The first three features collectively suggest that the transfer mechanism for both heat and helium is probably mantle melting accompanying the current extension in western Anatolia, yet the latter two further indicate that this may be accomplished via subsurface plutonic activities. The large range observed in the helium isotope compositions may be linked with differential (local) extension rates and associated melt generation in the respective areas. This suggestion can be substantiated by He isotope data from more of the region.

You do not currently have access to this chapter.

Figures & Tables

Contents

References

Related

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal