Skip to Main Content
Book Chapter

High-pressure mineralogy of diamond genesis

By
Yuriy A. Litvin
Yuriy A. Litvin
Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow District, 142432, Russia
Search for other works by this author on:
Published:
January 01, 2007

Diamond genesis can be clarified by estimating the common parental media for diamond and its syngenetic inclusions. Formation of diamond and diamondite in carbonatitic melts with garnets, clinopyroxenes, carbonates, iron-chromium alloys, and other minerals was confirmed in experiments using diamond-bearing Kokchetav (Kazakhstan) and Chagatai (Uzbekistan) carbonatitic rocks as the starting materials. Experiments on melting equilibrium of an eclogitic garnet-pyrrhotite join at 7 GPa revealed the existence of a nearly complete silicate-sulfide liquid immiscibility. Very low solubility of silicate components in the sulfide melt implies that the melt is not so efficient for syngenesis of diamonds and silicate inclusions, whereas carbonatitic (carbonate-silicate) parental melts can provide syngenesis of diamond and their primary inclusions more viably. The major components of the parental media for diamond syngenesis are carbonates and silicates, and the minor components are oxides, sulfides, phosphates, haloids, carbon dioxide, water, etc. These media are partially or completely molten during diamond formation, and they have compositionally variable major and minor component contents. It is obvious that the parental media for diamond is closely related to the genesis of carbonatitic magmas in the Earth's mantle.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Special Papers

Advances in High-Pressure Mineralogy

Eiji Ohtani
Eiji Ohtani
Institute of Mineralogy, Petrology, and Economic Geology, Faculty of Science, Tohoku University, Sendai 980-8578, Japan
Search for other works by this author on:
Geological Society of America
Volume
421
ISBN print:
9780813724218
Publication date:
January 01, 2007

References

Related

Citing Books via

Related Articles
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal