Skip to Main Content
Book Chapter

Weather, Climate, and Topography

Published:
January 01, 2006

This paper presents a review of recent progress on the theory of orographic precipitation and a discussion of the role of preexisting atmospheric disturbances, especially their strong water vapor fluxes. I also introduce the basic elements of stable moist airflow dynamics and cloud physics, and a new linear theory of orographic precipitation. The theory is tested against two types of data: a single event of Alpine precipitation and the annual climatology of the Oregon coastal ranges. Different methods are used to determine the free “cloud-delay” parameters in the theory, including a statistical analysis of data from conventional rain gauges and isotope analysis of stream samples. The surprising threshold behavior of nonlinear accretion-dominated cloud physics is displayed. Finally, I consider the impact of scale-dependent precipitation patterns on erosion and terrain evolution.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Special Papers

Tectonics, Climate, and Landscape Evolution

Sean D. Willett
Sean D. Willett
Search for other works by this author on:
Niels Hovius
Niels Hovius
Search for other works by this author on:
Mark T. Brandon
Mark T. Brandon
Search for other works by this author on:
Donald M. Fisher
Donald M. Fisher
Search for other works by this author on:
Geological Society of America
Volume
398
ISBN print:
9780813723983
Publication date:
January 01, 2006

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal