Skip to Main Content

We review the tectonic evolution of the southwest Pacific east of Australia from ca 120 Ma until the present. A key factor that developed early in this interval and played a major role in the subsequent geodynamic history of this region was the calving off from eastern Australia of several elongate microcontinental ribbons, including the Lord Howe Rise and Norfolk — New Caledonia Ridge. These microcontinental ribbons were isolated from Australia and from each other during a protracted extension episode from ca 120 to 52 Ma, with oceanic crust accretion occurring from 85 to 52 Ma and producing the Tasman Sea and the South Loyalty Basin. Generation of these microcontinental ribbons and intervening basins was assisted by emplacement of a major mantle plume at 100 Ma beneath the southern part of the Lord Howe Rise, which in turn contributed to rapid and efficient eastward trench rollback. A major change in Pacific plate motion at ca 55 Ma initiated east-directed subduction along the recently extinct spreading centre in the South Loyalty Basin, generating boninitic lithosphere along probably more than 1000 km of plate boundary in this region, and growth of the Loyalty-D'Entrecasteaux arc. Continued subduction of South Loyalty Basin crust led to the arrival at about 38 Ma of the 70–60 million years old western volcanic passive margin of the Norfolk Ridge at the trench, and west-directed emplacement of the New Caledonia ophiolite. Lowermost allochthons of this ophiolite are Maastrichtian and Paleocene rift tholeiites derived from the underthrusting passive margin. Higher allochthonous sheets include a poorly exposed boninitic lava slice, which itself was over-ridden by the massive ultramafic sheets that cover large parts of New Caledonia and are derived from the colliding forearc of the Loyalty-D'Entrecasteaux arc. Post-collisional extensional tectonism exhumed the under thrust passive margin, parts of which have blueschist and eclogite facies metamorphic assemblages. Following locking of this subduction zone at 38-34 Ma, subduction jumped east-ward, to form a newwest-dipping subduction zone above which formed the Vitiaz arc, that contained elements which today are located in the Tongan, Fijian, Vanuatu and Solomons arcs. Several episodes of arc splitting fragmented the Vitiaz arc and produced first the South Fiji Basin (31-25 Ma) and later (10 Ma to present) the North Fiji Basin. Collision of the Ontong Java Plateau, a large igneous province, with the Solomons section of the Vitiaz arc resulted in a reversal of subduction polarity, and growth of the Vanuatu arc on clockwise-rotating, older Vitiaz arc and South Fiji Basin crust. Continued rollback of the trench fronting the Tongan arc since 6 Ma has split this arc and produced the Lau Basin-Havre Trough.

This southwest Pacific style of crustal growth above a rolling-back slab is applied to the 600-220 Ma tectonic development of the Tasman Fold Belt System in southeastern Australia, and explains key aspects of the geological evolution of eastern Australia. In particular, collision between a plume-triggered 600 Ma volcanic passive margin and a 510–515 Ma boninitic forearc of an intra-oceanic arc had the same relative orientation and geological effects as that which produced New Caledonia. A new subduction system formed probably at least several hundred kilometres east of the collision zone and produced the Macquarie Arc, In which the oldest lavas were erupted ca 480 Ma. Continued slab rollback induced regional extension and the growth of narrow linear troughs in the Macquarie Arc, which persisted until terminal deformation of this fold belt in the late-Middle to Late Devonian. A similar pattern of tectonic development generated the New England Fold Belt between the Late Devonian and Late Triassic. Parts of the New England Fold Belt have been broken from Australia and moved oceanward to locations in New Zealand, and on the Lord Howe Rise and Norfolk – New Caledonia Rise, during the post-120 Ma breakup. Given that the Tasman Fold Belt System grew between 600 and 220 Ma by crustal accretion like the southwest Pacific since 120 Ma, facing the open Pacific Ocean, we question whether the eastern (Australia–Antarctica) part of the Neoproterozoic Rodinian supercontinent was Joined to Laurentia.

You do not currently have access to this chapter.

Figures & Tables

Contents

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal