Skip to Main Content

  Contents   
    Page 
Table 4  1. Compressibility of elements crystallizing in the cubic system  43 
  2. Compressibility of elements crystallizing in the hexagonal and tetragonal systems  46 
  3. Compression of a few miscellaneous elements  47 
  4. Compression and thermal expansion of the alkali metals  48 
  4.1. Effect of pressure on thermal expansion  48 
  5. Compression of elements to 50,000 kg/cm2   49 
  6. Compression of compounds to 50,000 kg/cm2   50 
  7. Compressibility of cubic compounds  52 
  8. Compressibility of hexagonal, trigonal, and tetragonal compounds  54 
  9. Compressibility of orthorhombic compounds  56 
  10. Compressibility of monoclinic and triclinic compounds  58 
  11. Change of compressibility on melting  59 
  12. Compressibility of several artificial and natural glasses  60 
  13. Compressibility of rocks at low pressures  61 
  14. Compressibility of rocks at high pressures  62 
  Contents   
    Page 
Table 4  1. Compressibility of elements crystallizing in the cubic system  43 
  2. Compressibility of elements crystallizing in the hexagonal and tetragonal systems  46 
  3. Compression of a few miscellaneous elements  47 
  4. Compression and thermal expansion of the alkali metals  48 
  4.1. Effect of pressure on thermal expansion  48 
  5. Compression of elements to 50,000 kg/cm2   49 
  6. Compression of compounds to 50,000 kg/cm2   50 
  7. Compressibility of cubic compounds  52 
  8. Compressibility of hexagonal, trigonal, and tetragonal compounds  54 
  9. Compressibility of orthorhombic compounds  56 
  10. Compressibility of monoclinic and triclinic compounds  58 
  11. Change of compressibility on melting  59 
  12. Compressibility of several artificial and natural glasses  60 
  13. Compressibility of rocks at low pressures  61 
  14. Compressibility of rocks at high pressures  62 

Density and specific volume are dependent not only upon the temperature but also upon the stress. A stress system consisting of uniform pressure in all directions is known as “ hydrostatic” pressure; the change of specific volume or of density for not too great changes of hydrostatic pressure may be described in terms of a single coefficient, the compressibility β, defined by

β = 1 V 0 ( d V d P ) T = 1 ρ 0 ( d ρ d P ) T
⁠, where V 0 is the specific volume, ρ0 the density at 1 atmosphere, and P the pressure. Since dV/dP is intrinsically negative, β is a positive number, with the dimensions of the reciprocal of a pressure or stress. In general, β depends upon the pressure and the temperature. Its reciprocal K is known as the bulk modulus.

The compressibility . . .

You do not currently have access to this chapter.

Figures & Tables

Contents

References

Related

Citing Books via

Related Articles
Related Book Content
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal