Skip to Main Content
Book Chapter

Analogue scale models of pluton emplacement during transpression in brittle and ductile crust

By
Keith Benn
Keith Benn
Search for other works by this author on:
Francis Odonne
Francis Odonne
Search for other works by this author on:
Sharon K. Y. Lee
Sharon K. Y. Lee
Search for other works by this author on:
Ken Darcovich
Ken Darcovich
Search for other works by this author on:
Published:
January 01, 2000

Analogue experiments were used to investigate pluton emplacement during transpression in a layered crust. Models consisted of (1) a silicone gum-PbO suspension as analogue magma, (2) a silicone gum-Pb suspension as a basal ductile layer, and (3) an overlying sand pack representing brittle crust. The models were transpressed at 3 mm/hr causing the extrusion of the analogue magma from a progressively closing slot, and its emplacement into the ductile layer. The thicknesses of the layers were critical in controlling the shapes of intrusions and the structures that developed in the brittle overburden. Thicker sand packs led to flattened, symmetrical laccolith-shaped intrusions and the nucleation of one oblique thrust in the sand pack above the extremity of the intrusion. Thinner sand packs led to thicker, asymmetrical laccolith-like intrusions with uplift of the overburden on an oblique thrust, and the formation of a shallow graben in the extrados of a bending fold. Reducing the thickness of the basal ductile layer resulted in a larger number of shear zones in the sand pack, and structural geometries approaching those produced in experiments involving only a brittle analogue crust and no ductile layer. Shear zones in the sand pack were localised by intrusions, and also played a key role in displacing analogue brittle crust to make space for intrusions. The results suggest that tectonic forces may play an important role in displacing blocks of crust during pluton emplacement in transpressional belts. They also suggest that pluton shapes, and the geometries and kinematics of emplacement-related shear zones and faults, may depend on the depth of emplacement. In nature, depending on the structural level exposed in the map plane, faults and shear zones that helped make space for emplacement may not appear to be spatially associated with the pluton.

You do not currently have access to this article.
Don't already have an account? Register

Figures & Tables

Contents

GSA Special Papers

The Fourth Hutton Symposium on the Origin of Granites and Related Rocks

Bernard Barbarin
Bernard Barbarin
Search for other works by this author on:
William Edryd Stephens
William Edryd Stephens
Search for other works by this author on:
Bernard Bonin
Bernard Bonin
Search for other works by this author on:
Jean-Luc Bouchez
Jean-Luc Bouchez
Search for other works by this author on:
David Barrie Clarke
David Barrie Clarke
Search for other works by this author on:
Michel Cuney
Michel Cuney
Search for other works by this author on:
Hervé Martin
Hervé Martin
Search for other works by this author on:
Geological Society of America
Volume
350
ISBN print:
9780813723501
Publication date:
January 01, 2000

GeoRef

References

Related

A comprehensive resource of eBooks for researchers in the Earth Sciences

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Subscribe Now