Skip to Main Content
Book Chapter

Fingerprinting the metal endowment of early continental crust to test for secular changes in global mineralization

By
Christien Thiart
Christien Thiart
1
Africa Earth Observatory Network (AEON) and Department of Statistical Sciences, University of Cape Town, Rondebosch 7701, South Africa
Search for other works by this author on:
Maarten J. de Wit
Maarten J. de Wit
2
Africa Earth Observatory Network (AEON) and Department of Geological Sciences, University of Cape Town, Rondebosch 7701, South Africa
Search for other works by this author on:
Published:
January 01, 2006

Archean cratons are fragments of old continents that are believed to be more richly endowed with mineral deposits than younger terrains. The mineral deposits of different cratons are also diversely enriched with useful (to humankind) chemical elements. Cratons are therefore mineral diversity hotspots that represent regional geochemical heterogeneities of early Earth, the evidence for which remains encoded on each craton as unique metallogenic “fingerprints.” Using six selected elements groups from our extensive in-house GIS database of Gondwana mineral deposits, we derive the metallogenic fingerprints of 11 Archean cratons of the Southern Hemisphere, and compare these against metallogenic fingerprints of the same selected elements in younger crust of three of their host continents (Africa, Australia, and South America). After adjusting the mineral inventory of each craton to account for underexploration of regions lacking infrastructure and other political and economic conditions for mineral investment, we show that mineral deposit density and diversity of Earth's continental lithosphere has decreased with time. We conclude that metallogenic elements were transferred more efficiently from the mantle to the continental lithosphere in the Archean and/or that subsequent (younger than 2.5 Ga) recycling of these elements (mineral deposits) back into the mantle has become more effective. How most of these fragments of old continents inherited their rich and diverse metallogenic characteristics is unresolved, because different cratons are likely to represent only small remnants of once much larger and possibly more varied Archean continents, and part of the total metal inventory of Archean continents must have been recycled back into in the mantle. The latter has implications for understanding the secular change in the redox state of the Archean mantle and fluid envelope.

You do not currently have access to this article.

Figures & Tables

Contents

GSA Memoirs

Evolution of Early Earth's Atmosphere, Hydrosphere, and Biosphere - Constraints from Ore Deposits

Stephen E. Kesler
Stephen E. Kesler
Search for other works by this author on:
Hiroshi Ohmoto
Hiroshi Ohmoto
Search for other works by this author on:
Geological Society of America
Volume
198
ISBN print:
9780813711980
Publication date:
January 01, 2006

References

Related

Citing Books via

Related Articles
Related Book Content
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal