Skip to Main Content

On the Earth there is no firm evidence that impacts can induce volcanic activity. However, the Moon does provide a very likely example of volcanism induced by an immense impact: the Imbrium basin-forming event was immediately succeeded by a crustal partial melting event that released basalt flows characterized by K, rare-earth elements (REE), P, and other trace elements (KREEP) over a wide area creating the Apennine Bench Formation. Impact total melting is inconsistent with the chemistry and petrography of these Apollo 15 KREEP basalts, which are quite unlike the impact melts recognized at Taurus-Littrow as the products of the Serenitatis impact. The Imbrium impact and the KREEP volcanic events are indistinguishable in radiometric age, and thus the volcanism occurred less than about 20 Ma later than the impact (less than about 0.5% of lunar history). The sample record indicates that such KREEP volcanism had not occurred in the region prior to that time, and demonstrates that it never occurred again. Such coincidence in time implies a genetic relationship between the two events, and impact-induced partial melting or release appears to be the only feasible process. Nonetheless, the characteristics of the Apollo 15 KREEP basalts suggest large-degree crustal melting that is not easy to reconcile with the inability of lunar pressure release alone to induce partial melting unless the source was already almost at its melting point. The earliest history of the surface of the Earth, at a time of greater internal heat production and basin-forming impacts, could have been greatly influenced by impact-induced melting.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal