Skip to Main Content
Skip Nav Destination

This study presents three regional cross sections, a structural map analysis, and a schematic map restoration. The sections are constrained by surface geology and petroleum wells and were developed using model-based methods to be consistent with the regional tectonic context and balancing concepts. Together, these products depict the geometry and kinematics of the major fault systems. Insights from this research include the following. Franciscan complex blueschist-facies rocks in the Mount Diablo region were unroofed west of their current location and subsequently thrust beneath the Great Valley sequence in the mid-Eocene. East Bay structures are complicated by overprinting of Neogene compression and dextral strike-slip motion on a Paleogene graben system. Net lateral displacement between the Hayward fault and the Central Valley varies from 26 km toward 341° to 29 km toward 010° in the southern and northern East Bay Hills, respectively. Uplift above a wedge thrust generates the principal Neogene structural high, which extends from Vallejo through Mount Diablo to the Altamont Ridge. Anomalous structural relief at Mount Diablo is due to strike-parallel thrusting on the crest of a fault-propagation fold formed on the west-verging roof thrust. Uplift that exposes the Coast Range ophiolite in the East Bay Hills is formed by oblique thrusting generated by slip transfer at the northern termination of the Calaveras fault. The Paleogene extensional fault system likely extends farther west than previously documented. An east-dipping branch of that system may underlie the Walnut Creek Valley. Three-dimensional restoration should be applied to constrain geologic frameworks to be used for seismic velocity modeling.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Close Modal

or Create an Account

Close Modal
Close Modal