Skip to Main Content
Skip Nav Destination
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/).

Abstract

The extraordinary outcrop conditions provide a unique opportunity to study the geology and tectonics of the Oman Mountains, which record a geological history of more than 800 million years. We provide a summary of the geological evolution of the Oman Mountains with the emphasis on the Jabal Akhdar and Saih Hatat domes. This Memoir comprises seven chapters. This first chapter summarizes the former studies and the tectonic framework. This is followed by a comprehensive description of all geological formations/rock units (Scharf et al. 2021a, Chapter 2, this Memoir) including the famous Semail Ophiolite, the fault and fold pattern (Scharf et al. 2021b, Chapter 3, this Memoir) and the overall structure (Scharf et al. 2021c, Chapter 4, this Memoir). Chapter 5 (Scharf et al. 2021d) explains the varied tectonic evolution of the study area, ranging from the Neoproterozoic until present, while Chapter 6 (Scharf et al. 2021e) contains the conclusions and a catalogue of open questions. Finally, Chapter 7 (Scharf et al. 2021f) provides two over-sized geological maps (1 : 250 000 version available online) and a correlation chart, providing an overview of the geological units/formations. This volume is of interest for all geoscientists, geoscience students and professionals studying the Oman Mountains on the surface as well as in the subsurface because it represents a comprehensive and detailed reference.

The Oman Mountains at the northeastern margin of the Arabian Plate display an impressive geological record in terms of phenomenological diversity and significance since the Precambrian. This record includes (1) the ‘Snowball Earth’ glaciation (e.g. Leather et al. 2002; Kilner et al. 2005), (2) the Ediacaran ‘Shuram Excursion’ (e.g. Burns and Matter 1993; Le Guerroué et al. 2006a, 54C90b), (3) the enigmatic Hercynian Unconformity (‘Hercynian Orogeny’; e.g. Glennie et al. 1974; Beurrier et al. 1986b; Rabu et al. 1986; Faqira et al. 2009), (4) the Permo-Carboniferous glaciation (e.g. Heward and Penney 2014), (5) the Pangaea rifting and spreading of the Neo-Tethys Ocean during the Late Paleozoic (e.g. Blendinger et al. 1990; Béchennec et al. 1991), (6) the iconic obduction of the Semail Ophiolite (e.g. Glennie et al. 1974; Searle and Malpas 1980; Lippard et al. 1986; Goffé et al. 1988; Hacker and Mosenfelder 1996; Hacker et al. 1996; Cowan et al. 2014; Rioux et al. 2012, 2013, 2016), (7) high-pressure/low-temperature metamorphism of the continental margin (e.g. Lippard 1983; Le Métour et al. 1986b; Goffé et al. 1988; El-Shazly et al. 1990; Warren et al. 2003, 2005), (8) formation and exhumation of the large Jabal Akhdar Dome (JAD) and Saih Hatat Dome (SHD) which shape the Oman Mountains (e.g. Poupeau et al. 1998; Saddiqi et al. 2006; Hansman et al. 2017; Grobe et al. 2019), (9) Upper Cretaceous rudist limestones (e.g. Skelton et al. 1990; Wyns et al. 1992; Philip et al. 1995) and organic-rich intrashelf basin environments (e.g. van Buchem et al. 2002), (10) surface analogues of subsurface petroleum source and reservoirs rocks (Grantham et al. 1988; Koehrer et al. 2011; Pöppelreiter et al. 2011; Bendias et al. 2013; Heward and Penney 2014; Grobe et al. 2016), (11) Neogene to active tectonics (e.g. Fournier et al. 2006; Mattern et al. 2018; Moraetis et al. 2018) and (12) a palaeoclimate record for the past 325 ka based on speleothems from cave systems developed in Mesozoic carbonate formations (e.g. Burns et al. 1998, 2001). The Semail Ophiolite, as the world's largest and best preserved ophiolite (e.g. Searle and Cox 1999), and the Oman Mountains, as the unique case of an obduction orogen, have been the focus of much research interest from the international geoscientific community during the past decades (e.g. Nicolas et al. 1996, 2000).

Due to the massive improvement of Oman's road system during the last few decades and the excellent outcrops, the country became a field laboratory for tectonometamorphic, sedimentological and stratigraphic studies (e.g. Glennie et al. 1973, 1974; Robertson et al. 1990; Hacker et al. 1996; Saddiqi et al. 2006; Rollinson et al. 2014) with a research focus on ophiolites and ophiolite obduction (e.g. Lippard et al. 1986; Nicolas et al. 1996; Gregory et al. 1998; Searle and Cox 1999, 2002). We compiled these and many other studies to put forward an overview of the geology, tectonostratigraphy and tectonic evolution of the Oman Mountains, as well as a description of their large-scale structures. We concentrate on the eastern part of the Oman Mountains from the western tip of the JAD to the eastern end of the SHD (fig. A.1 (54C141Scharf et al. 2021f, Chapter 7, this Memoir)). To assist the international research community, we provide a newly compiled geological map of the eastern part of the Oman Mountains with the JAD and SHD in order to standardize the compiled tectonic units within a single map. This map is largely based on the geological maps of Oman at the scale of 1:250 000 (Béchennec et al. 1992a, 54C17b; Le Métour et al. 1992; Wyns et al. 1992). The map is accompanied by text which is an update on the geological knowledge of the Oman Mountains with some emphasis on the region's geodynamic history. Moreover, we provide a detailed topographic map and several simplified geological cross-sections, as well as an extensive tectonostratigraphic chart (fig. A.2 (54C141Scharf et al. 2021f, Chapter 7, this Memoir)).

The JAD consists of autochthonous rocks and is divided into the WNW-striking main dome (c. 85 km × 35 km) and NNE-oriented subdome attached to the NE of the main dome (25 km × 10 km; fig. 2.1 (54C136Scharf et al. 2021a, Chapter 2, this Memoir)). This NNE-oriented subdome is parallel to the Semail Gap and is known as the Nakhl Subdome (fig. A.1 in 54C141Scharf et al. 2021f, Chapter 7, this Memoir). In the NE, the Nakhl Subdome sharply bends towards the ESE and extends for c. 8 km until Fanja. The overall shape of the JAD is not circular, as expected for a tectonic dome, and may be attributed to the reactivation of faults within the subsurface during doming (see ‘Post-obduction deformation’ in Chapter 5 (54C139Scharf et al. 2021d)).

The SHD has an overall elongated shape and is aligned NW–SE from Fanja for c. 95 km towards the SE. The NE–SW extent ranges between 25 and 50 km. We define the SHD as the area consisting of (par-)autochthonous rocks that are surrounded by the Hawasina nappes and/or Semail Ophiolite to the NW and SW, as well as the ocean to the NE. Its southeastern margin is blanketed by Cenozoic shallow-marine sedimentary rocks near Tiwi (fig. A.1). The southeastern border or margin of the SHD is therefore not well defined. Between both domes near Fanja, a WNW–ESE-oriented structural and topographic depression is exposed (‘Fanjah Saddle’ of Coffield 1990). The autochthonous rocks west and east of the saddle rise 1.3 km above the saddle surface, which consists of allochthonous rocks. The fold axes of the JAD and SHD plunge below the 10-km-wide Fanjah Saddle at an angle of 20–40° (Coffield 1990). Roughly N–S-striking high-angle normal faults with dip directions towards the centre of the saddle cut the flanks of the JAD and SHD (Coffield 1990).

Lees (1928) introduced the Semail Nappe and recognized the allochthonous nature of the Hawasina nappes (see Heward 2016 for a summary of the pioneering expedition of Lees and others during the 1920s). The first descriptions of the Semail Ophiolite after the introduction of plate-tectonic theory were by Reinhardt (1969) and Allemann and Peters (1972).

The entire Oman Mountains were first mapped at a scale of 1:500 000 by Glennie et al. (1974). They introduced the main rock units of the Oman Mountains, the pre-Permian metasedimentary successions, the Arabian Platform sediments, the Hawasina nappes, the Semail Ophiolite and the post-obduction sedimentary rocks. Further mapping was carried out by the United States Geological Survey (USGS) in the vicinity of the SHD (Bailey 1981). Geologists of the Open University (UK) mapped the Semail Ophiolite (Lippard et al. 1986). French workers of the Bureau de Recherches Géologiques et Minières (BRGM) mapped the Central and Southeastern Oman Mountains at a scale of 1:100 000 (Béchennec et al. 1986a, 54C14b; Beurrier et al. 1986a, 54C21b; de Gramont et al. 1986; Hutin et al. 1986; Janjou et al. 1986; Le Métour et al. 1986a, 54C92b; Rabu et al. 1986; Villey et al. 1986a, 54C166b, 54C167c; Roger et al. 1991; Wyns et al. 1992). This map series was extended by the sheet of Ibra (Southeastern Oman Mountains) at a scale of 1:100 000 (Peters et al. 2005). Detailed mapping of the entire Semail Ophiolite was carried out and summarized by Nicolas et al. (2000). Eight geological maps of the Muscat-Seeb area have been published at a scale of 1:25 000 (Kajima and Ishii 2012; Kajima and Otake 2012; Kajima et al. 2012a, 54C78b, 54C79c, 54C80d, 54C81e, 54C82f).

Two important compilations of the subsurface stratigraphy and nomenclature were produced by Hughes Clarke (1988) and Forbes et al. (2010). The latter provided a comprehensive chart showing the subsurface stratigraphy of Oman (Forbes et al. 2010, their enclosure 1). Two Special Publications of the Geological Society of London (Robertson et al. 1990; Rollinson et al. 2014) represent significant advancements to the understanding of the geology and tectonics of the Oman Mountains. A summary booklet describing the geology and origin of the Oman Mountains was published by Glennie (1995). His work was the first step in understanding the geology of northern Oman for geologists, non-geologist scientists and engineers from the oil industry. This booklet became so famous and in such demand that a second edition was released (Glennie 2005). Searle (2007) wrote a review article about the Permo-Mesozoic evolution of the eastern Arabian Platform and margin with the adjacent Hawasina Basin. This work also targets the obduction of the Semail Ophiolite as well as the post-obduction evolution of parts of the Oman Mountains.

Many informative popular science and geoguide books, including the most recent and well-illustrated work of Al-Kindi (2018) and Searle (2019), have been published during the past decades, outlining the unique and spectacular geology of the Sultanate. With its description of numerous fascinating outcrops, the geological field guide of Hoffmann et al. (2016) could be used as a companion document to this book.

The formations at the surface in our study area may have different names to coeval deposits in the subsurface. The latter are commonly used by researchers in the oil industry (e.g. Hughes Clarke 1988; Sharland et al. 2004; Forbes et al. 2010). We use the surface names in our manuscript, but will also provide the subsurface names for clarity (Chapter 2 and fig. A.2 (54C136Scharf et al. 2021a,54C141f, Chapters 2 and 7, this Memoir)).

We first describe in detail all major geological formations and tectonic units (54C136Scharf et al. 2021a, Chapter 2, this Memoir), provide the regional fault and fold pattern (54C137Scharf et al. 2021b, Chapter 3, this Memoir) and characterize the large-scale structure of the study area (54C138Scharf et al. 2021c, Chapter 4, this Memoir). This is followed by a comprehensive description of the entire tectonic evolution of the Oman Mountains from the Neoproterozoic until present (54C139Scharf et al. 2021d, Chapter 5, this Memoir). This chapter includes a lithospheric scale series of cross-sections, depicting the kinematics and dynamics of the different deformation events with a tectono-metamorphic synthesis. The conclusions and a catalogue of open questions, based on the available literature complete this memoir (54C140Scharf et al. 2021e, Chapter 6, this Memoir). A compiled geological map at a scale of 1:250 000 and a tectonostratigraphic chart are enclosed in the appendix, providing a handy comprehensive overview (figs A.1 and A.2 (54C141Scharf et al. 2021f, Chapter 7, this Memoir). Note that in the literature the transcription of proper Arabic names into English commonly results in different spellings of the same feature; for example, the vowels in the name ‘Semail' as in ‘Semail Ophiolite' may be transcribed as ‘Samail' or ‘Sumail’.

Tectonic framework

The eastern part of the Arabian Peninsula (Fig. 1.1) was the site of several tectonic events. Recently, Callegari et al. (2020) documented the first evidence of the Cadomian Orogeny in northern Oman. This event is documented by tight to isoclinal folds with an amplitude of a few to tens of metres in the Hajir Formation of the JAD. The shortening direction during this event was NE–SW-aligned (in present coordinates). The age of deformation was at some time after deposition of the Fara Formation and before the Angudan event, that is, between c. 540 and 525 ± 5 Ma (Callegari et al. 2020; section ‘F1 folds’ in 54C137Scharf et al. 2021b, Chapter 3, this Memoir). The Cadomian Orogeny was followed (and probably overlapped) by the Neoproterozoic–Early Cambrian East African Orogeny (sensuStern 1994), resulting in the Angudan Unconformity that coincides with the final stage of the East African Orogeny (c. 550–510 Ma; Loosveld et al. 1996; Al-Husseini 2000; Immerz et al. 2000; Koopman et al. 2007; Forbes et al. 2010; Al-Kindi and Richard 2014; Droste 2014, fig. 6a). This orogeny is associated with the continent–continent collision of East and West Gondwana. Some authors use the term ‘Malagasy Orogeny’ in Arabia as a synonym for the latest part of the East African Orogeny (e.g. Collins and Pisarevsky 2005). We use the phrase ‘East African Orogeny’. We also use the name ‘Angudan Unconformity’ throughout the text.

Fig. 1.1.

Tectonic overview map of the northeastern Arabian Peninsula. Because of the scale, the metamorphic sole (black) below the ophiolite is only visible in certain areas. All arrows indicate the movement direction of the Semail Ophiolite during the Cenomanian–Maastrichtian. HW, Hawasina Window; JAD, Jabal Akhdar Dome; SHD, Saih Hatat Dome. Map modified after the Geological Map of Oman, 1:1 000 000, Ministry of Petroleum and Minerals (Béchennec et al. 1993). Batain Mélange after Shackleton et al. (1990), Schreurs and Immenhauser (1999) and Immenhauser et al. (2000). Orientation of sheeted dykes and movement direction of the Semail Ophiolite is after Hacker et al. (1996). The Makran– and Minab–Zendan thrusts are from Regard et al. (2005). The Ja'alan and Qalhat faults are drawn after Fournier et al. (2006) and the Maradi Fault is drawn after Filbrandt et al. (2006). Parts of the northern Oman Mountains are drawn after the geological map from the United Arab Emirates (UAE) (British Geological Survey 2006). The box outlines the main figure A.1 (Scharf et al. 2021f, Chapter 7, this Memoir). Inset shows the greater study realm and the occurrence of the Masirah Ophiolite.

Fig. 1.1.

Tectonic overview map of the northeastern Arabian Peninsula. Because of the scale, the metamorphic sole (black) below the ophiolite is only visible in certain areas. All arrows indicate the movement direction of the Semail Ophiolite during the Cenomanian–Maastrichtian. HW, Hawasina Window; JAD, Jabal Akhdar Dome; SHD, Saih Hatat Dome. Map modified after the Geological Map of Oman, 1:1 000 000, Ministry of Petroleum and Minerals (Béchennec et al. 1993). Batain Mélange after Shackleton et al. (1990), Schreurs and Immenhauser (1999) and Immenhauser et al. (2000). Orientation of sheeted dykes and movement direction of the Semail Ophiolite is after Hacker et al. (1996). The Makran– and Minab–Zendan thrusts are from Regard et al. (2005). The Ja'alan and Qalhat faults are drawn after Fournier et al. (2006) and the Maradi Fault is drawn after Filbrandt et al. (2006). Parts of the northern Oman Mountains are drawn after the geological map from the United Arab Emirates (UAE) (British Geological Survey 2006). The box outlines the main figure A.1 (Scharf et al. 2021f, Chapter 7, this Memoir). Inset shows the greater study realm and the occurrence of the Masirah Ophiolite.

The Hercynian Orogeny in Europe was caused by the convergence of Gondwana and Laurasia. The ‘Hercynian Orogeny’ in the northwestern Arabian Plate is manifested in the regional pre-Carboniferous uplift and erosion as well as arch formation (see Faqira et al. 2009). Additionally, Abbo et al. (2018) concluded that the ‘Hercynian’ event in the Arabian Plate was not a significant deformation event, but rather a thermal event. The same authors suggested that the large-scale Paleozoic arches and basins across NE Africa and Arabia formed due to a mantle disturbance. Terminologically, we are following Faqira et al. (2009) and use the term ‘Hercynian’ (in quotes), but we are not suggesting that the Hercynian Orogeny (sensu lato) and related deformation and/or folding took place in Oman; rather, it seems to have been a thermal event (Abbo et al. 2018). In the subsurface of Oman, a significant truncation of Lower Paleozoic strata below the mid-Carboniferous exists. This truncation is related to salt movements and reactivation of basement trends (Droste 1997, fig. 3; Konert et al. 2001; Svendsen 2004). The ‘Hercynian’ event in Oman is only evidenced by ‘Hercynian’ K/Ar crystallization ages in pre-Permian formations of the SHD at 327 ± 16 Ma (Glennie et al. 1974) and of the JAD at 329 ± 11 and 321 ± 10 Ma of chlorite samples from the Mu'aydin Formation. (Beurrier et al. 1986b). Moreover, pre-‘Hercynian’ rocks commonly display NE-trending fold axes in the JAD (Mann and Hanna 1990). The NE-trending folds are unconformably overlain by sedimentary rocks of the Haima Supergroup in the subsurface south of the Oman Mountains. The deformation is therefore Early Cambrian in age and not related to an ‘Hercynian’ event (Droste, H. 2018, pers. comm.). A pre-Amdeh age for the folding and thrusting in the Huqf area has been suggested by Le Métour et al. (1995). There is a major erosional gap with an angular unconformity between the pre-Permian rocks and the Permian Saiq Formation in the JAD and SHD (Le Métour et al. 1986b; Villey et al. 1986c). The age of the youngest rocks below the unconformity of the JAD and SHD is c. 540 Ma (Fara Formation) and c. 460 Ma (Amdeh Formation), respectively. These two aspects have been linked to the ‘Hercynian’ movements in the JAD area (Beurrier et al. 1986b, fig. 14; Rabu et al. 1986, fig. 16). Furthermore, block faulting has been attributed to the ‘Hercynian’ movements by Beurrier et al. (1986b), Le Métour et al. (1986b), Rabu et al. (1986) and Villey et al. (1986c). The trend of the aforementioned fold axes is in line with the trend of ‘Hercynian’ arches (Faqira et al. 2009, fig. 2). The ‘Hercynian Unconformity’ is also known as the ‘pre-Permian unconformity’ (e.g. Chauvet et al. 2009), the ‘mid-Carboniferous tectonic event’ (Al-Husseini 2004) and the ‘Pre-Unayzah unconformity’ in Saudi Arabia (Al-Husseini 2004; Fig. 1.1).

The ‘Hercynian’ event was followed by the break-up of Gondwana between Arabia and the Cimmerian continental blocks as well as between Arabian and India (e.g. Blendinger et al. 1990; Robertson and Searle 1990; Stampfli and Borel 2002; Chauvet et al. 2009; D4 in fig. A.2; fig. 5.18c). The timing of continental rifting is Late Carboniferous–Permian (see section on ‘Pangaea rifting and formation of the Neo-tethys Ocean and Hawasina Basin’ in Chapter 5 (54C139Scharf et al. 2021d)). The break-up of Gondwana resulted in the formation of the Batain Basin SE of Oman and the Hawasina Basin NE of Oman during the Early and mid-Permian, respectively (e.g. Béchennec et al. 1992a, 54C17b; Immenhauser et al. 2000; see also sections on ‘Hawasina nappes’ in Chapter 2 (54C136Scharf et al. 2021a) and ‘Pangaea rifting and formation of the Neo-Tethys Ocean and Hawasina Basin’ in Chapter 5 (54C139Scharf et al. 2021d)). Divergence between Arabia and the Cimmerian continental blocks continued to form the Neo-Tethys Ocean, while extension between Arabia and India aborted. Mostly deep-sea sediments with some limestone were deposited in the Hawasina Basin from the mid-Permian to the Late Cretaceous (e.g. Glennie et al. 1974). These rocks were thrust onto the Arabian margin and platform and were themselves overthrust by the Semail Ophiolite during the Late Cretaceous (e.g. Glennie et al. 1974; section ‘Intraoceanic thrusting, formation and obduction of the Semail Ophiolite’ in Chapter 5 of this Memoir (54C139Scharf et al. 2021d)).

Large-scale obduction of the prototypical Semail Ophiolite onto the Arabian passive margin during the Late Cretaceous, and the ophiolite sequence itself, have been well researched (e.g. Allemann and Peters 1972; Glennie et al. 1974; Searle and Malpas 1980; Coleman and Hopson 1981; Hacker et al. 1996; Searle and Cox 1999, 2002; Searle et al. 2004; Rioux et al. 2016; Soret et al. 2017; Guilmette et al. 2018). The recent analysis of Guilmette et al. (2018) advocates that initial intraoceanic subduction was induced at c. 104 Ma. At c. 96 Ma the subduction zone matured and a self-sustained subduction started with a supra-subduction zone spreading centre (e.g. Rioux et al. 2016). The newly formed oceanic lithosphere was coevally thrust (obducted) onto Arabian lithosphere. Thrusting lasted until c. 68 Ma (Lippard 1983; Goffé et al. 1988; Hacker et al. 1996; Searle and Cox 1999; El-Shazly et al. 2001; Warren et al. 2003, 2005; Rioux et al. 2016; section ‘Intraoceanic thrusting, formation and obduction of the Semail Ophiolite’ in Chapter 5 of this Memoir (Scharf et al. 2021d)). More than 400–450 km of obduction are considered for the extended part of the Arabian Crust (Cooper 1988; Searle 2007) and another 150 km for the Arabian Platform of more regular thickness as quantified by map analysis. The entire thrust range therefore amounts to > 550–600 km. Thrusting of the ophiolite ensued to the SW (Hacker et al. 1996). Today, the ophiolite covers an area of > 10 000 km2 and is c. 550 km long and c. 150 km wide (Searle and Cox 1999). The ophiolite measures several kilometres in thickness, which decreases towards the south (Al-Lazki et al. 2002; Aldega et al. 2017; Carminati et al. 2019). According to Reinhardt (1969), Glennie et al. (1974), Coleman (1981), Lippard et al. (1986), Nicolas (1989) and Searle and Cox (1999), the Semail Ophiolite is composed of c. 8–12 km of upper mantle peridotites (mainly harzburgite) and c. 2.5–8 km of oceanic crustal rocks; according to Rabu et al. (1986) and Villey et al. (1986b, c), the entire ophiolite thickness measures 8–9 km. Hacker and Mosenfelder (1996) provided an inferred pre-emplacement thickness of the Semail Ophiolite of 15–20 km.

Obduction is linked to plate convergence between Arabia and Eurasia and the closure of the intervening oceanic lithosphere (Dercourt et al. 1993; Stampfli and Borel 2002; Stampfli and Kozur 2006). Convergence was not only expressed by the obduction of the Semail Ophiolite. While the mantle and crust of the future Semail Ophiolite still formed in a supra-subduction zone spreading centre, the northeastern part of the Arabian passive margin was subducted to the NE beneath the future ophiolite (e.g. Lippard et al. 1986; El-Shazly and Coleman 1990; Searle et al. 1994; Searle and Cox 1999; Searle et al. 2004; Saddiqi et al. 2006; Rioux et al. 2012, 2013, 2016; Cowan et al. 2014; for more details on the direction of obduction and rotation during thrusting see van Hinsbergen et al. 2019 and section on ‘Intraoceanic thrusting, formation and obduction of the Semail Ophiolite’ in Chapter 5 of this Memoir (54C139Scharf et al. 2021d)). Eventually, the subducted plate segment was metamorphosed under high-pressure/low-temperature conditions (e.g. Lippard 1983; Le Métour et al. 1986b; Goffé et al. 1988; El-Shazly et al. 1990; Searle et al. 1994, 2004; Warren et al. 2003, 2005), and the Semail Ophiolite was thrust on the Arabian Plate (e.g. Searle et al. 2004). A slab break-off may have triggered rapid exhumation of the Arabian crustal slab with its blueschist and eclogite facies, exposed in the northeastern SHD (e.g. Searle et al. 2004).

A second ophiolite obduction affected the southeastern part of the Oman Mountains. The Masirah Ophiolite (or ‘Eastern Ophiolite Belt’ of Gnos et al. 1997; Immenhauser et al. 1998) is a fragment of oceanic lithosphere thrust onto the easternmost margin of Oman (e.g. Moseley and Abbotts 1979; Mountain and Prell 1990; Ries and Shackleton 1990; Shackleton and Ries 1990; Marquer et al. 1995; Schreurs and Immenhauser 1999; Immenhauser et al. 2000; Fig. 1.1). The sole of the ophiolite is not exposed, which makes it difficult to tectonically interpret its history of thrusting, emplacement and uplift. The Masirah Ophiolite derived from oceanic lithosphere of the ‘Somalia-Mozambique-Madagascar (SoMoMa) Ocean’ with a formation age of latest Jurassic to earliest Cretaceous (e.g. Smewing et al. 1991; Immenhauser 1995; Peters et al. 1995; Gnos et al. 1997; Marquer et al. 1998; Schreurs and Immenhauser 1999). Latest Jurassic ages (c. 150 Ma) are concluded based on U–Pb zircon studies and Ar/Ar dating on plagioclase of gabbro dykes (Peters et al. 1995), K–Ar ages on gabbros (Smewing et al. 1991) and dating of radiolarian cherts (Moseley 1990). The SoMoMa Ocean separated Gondwana into western (Africa and Arabia) and eastern (Madagascar and India) segments (fig. 5.18f). Formation of the ocean resulted in the gentle extension and uplift of the eastern Arabian margin and the Hawasina Basin (D5 in fig. A.2; Rabu 1987; Béchennec et al. 1992a, 54C17b; section ‘Arabian Platform’ in Chapter 5 (54C139Scharf et al. 2021d)). Geochemical analyses reveal that the ophiolite represents a young mid-ocean ridge that had formed during early drift between eastern and western Gondwana (Rollinson 2017). Later, the ocean basin underwent transpression as a result of convergence between India and Arabia, and was obducted and/or emplaced to the WNW for a few tens of kilometres as the ‘Masirah Ophiolite’ onto the easternmost tip of the Arabian Platform at the Cretaceous–Cenozoic boundary until the early Eocene (c. 65–55 Ma; Smewing et al. 1991; Peters et al. 1995; Gnos et al. 1997; Peters and Mercolli 1997; Marquer et al. 1998; Schreurs and Immenhauser 1999; Immenhauser et al. 2000; Gaina et al. 2015; fig. 5.18i). The Masirah Ophiolite therefore remained a part of the oceanic lithosphere for c. 80 Ma from its formation to its obduction (e.g. Rollinson 2017). The Hawasina and Haybi Complex were thrust along with the Semail Ophiolite during the Coniacian–Campanian from NE to SW. By contrast, the Masirah Ophiolite was thrust along with the Batain Mélange onto the eastern Oman margin during the Cretaceous–Cenozoic (Schreurs and Immenhauser 1999; Fig. 1.1). The Lower Permian to Upper Cretaceous sediments of the Batain Mélange derived from the Batain Basin, located east of Oman as part of the SoMoMa Ocean (Schreurs and Immenhauser 1999; Immenhauser et al. 2000). The Batain Basin is older (latest Carboniferous to Early Permian; Immenhauser et al. 2000) than the Hawasina Basin (Late Permian). Although the sediments of the Hawasina nappes and the Batain Mélange derived from different basins, the stratigraphy is similar (see Immenhauser et al. 1998, 2000).

The Semail and Masirah ophiolites differ in origin, tectonic setting, age of oceanic lithosphere formation (Neo-Tethys Ocean during the Cenomanian compared with SoMoMa Ocean during the latest Jurassic–earliest Cretaceous), time of obduction onto the Arabian Margin (late Cretaceous compared with latest Cretaceous–early Eocene) and direction of obduction (SW-ward compared with WNW-ward). Generation of the Semail Ophiolite is associated with a spreading centre in a supra-subduction zone setting with coeval formation and thrusting (e.g. Rioux et al. 2016), whereas the Masirah Ophiolite formed at a conventional mid-ocean ridge with its emplacement at c. 80 Ma after formation (see Rollinson 2017 for further comparison and discussion).

The Oligocene–Miocene to recent regional tectonic setting of the Arabian Plate is summarized in Figure 1.2. The northeastern plate margin corresponds to the Arabia–Eurasia collision zone, forming the Zagros and Makran mountains (e.g. Glennie et al. 1974; Robertson and Searle 1990; Loosveld et al. 1996; Immenhauser et al. 2000). Deformation in the Zagros Mountain Belt started before c. 25–23 Ma (e.g. Agard et al. 2011), amounts to 440 km of shortening (Monthereau 2011) and is still active (Vernant et al. 2004). Arabia is bounded in the west by the left-lateral Dead Sea Transform Fault that accommodated a displacement of 100–105 km (Walley 1998). The age of the fault is > 14 Ma (Bayer et al. 1988; Makris and Rihm 1991). The southwestern and southern margins of the Arabian Plate are defined by the spreading axes of the Red Sea and Gulf of Aden, respectively. Continental extension in the southern Red Sea area started during c. 27.5–23.8 Ma (Bosworth et al. 2005; Reilinger and McClusky 2011). Seafloor spreading between the Arabian and African plates (i.e. the Gulf of Aden) commenced at 20 Ma (Fournier et al. 2010). The southeastern boundary of Arabia is marked by the 8-Ma-old Owen Transform Fault. Dextral motion along this fault ensues at a rate of 3 ± 1 mm a−1 (Fournier et al. 2008).

Fig. 1.2.

Present tectonic frame of the Arabian Peninsula slightly modified after Hansman et al. (2017). Plate velocity from GPS information (Sella et al. 2002; McClusky et al. 2003; Reilinger et al. 2006; Vigny et al. 2006; ArRajehi et al. 2010). Forebulge axis in the Oman Mountains is after Rodgers and Gunatilaka (2002). Cross-section for the trace (A-A′) is depicted in figure 5.14 (Scharf et al. 2021d, Chapter 5, this Memoir).

Fig. 1.2.

Present tectonic frame of the Arabian Peninsula slightly modified after Hansman et al. (2017). Plate velocity from GPS information (Sella et al. 2002; McClusky et al. 2003; Reilinger et al. 2006; Vigny et al. 2006; ArRajehi et al. 2010). Forebulge axis in the Oman Mountains is after Rodgers and Gunatilaka (2002). Cross-section for the trace (A-A′) is depicted in figure 5.14 (Scharf et al. 2021d, Chapter 5, this Memoir).

Author contributions

AS: Conceptualization (lead), Writing original draft (lead), Visualization (lead), Supervision (lead), Investigation (lead); FM: Conceptualization (equal), Writing – review and editing (equal), Visualization (equal), Investigation (equal); MAW: Writing – review and editing (equal); GF: Writing – review and editing (equal); DM: Writing – review and editing (equal); BP: Writing – review and editing (equal); WB: Writing – review and editing (equal); IC: Writing – review and editing (equal).

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

1.
Abbo
A.
,
Avigad
D.
and
Gerdes
A.
2018
.
The lower crust of the northern broken edge of Gondwana: evidence for sediment subduction and syn-Variscan anorogenic imprint from zircon U-Pb-Hf in granulite xenoliths
.
Gondwana Research
 ,
64
,
84
96
,
2.
Agard
P.
,
Omrani
J.
et al
2011
.
Zagros orogeny: a subduction-dominated process
.
Geological Magazine
 ,
148
,
692
725
,
3.
Aldega
L.
,
Carminati
E.
,
Scharf
A.
,
Mattern
F.
and
Al-Wardi
M.
2017
.
Estimating original thickness and extent of the Semail Ophiolite in the eastern Oman Mountains by paleothermal indicators
.
Marine and Petroleum Geology
 ,
84
,
18
33
,
4.
Al-Husseini
M.I.
2000
.
Origin of the Arabian Plate Structures: Amar Collision and Najd Rift
.
GeoArabia
 ,
5
,
527
542
.
5.
Al-Husseini
M.I.
2004
.
Pre-Unayzah unconformity, Saudi Arabia. Carboniferous, Permian and Early Triassic Arabian Stratigraphy
.
GeoArabia Special Publication
 ,
3
,
15
59
.
6.
Al-Kindi
M.H.
2018
.
Evolution of Land and Life in Oman: An 800 Million Year Story
 .
Springer
,
7.
Al-Kindi
M.H.
and
Richard
P.D.
2014
.
The main structural styles of the hydrocarbon reservoirs in Oman
.
Geological Society, London, Special Publications
 ,
392
,
409
445
,
8.
Al-Lazki
A.I.
,
Seber
D.
,
Sandvol
E.
and
Barazangi
M.
2002
.
A crustal transect across the Oman Mountains on the eastern margin of Arabia
.
GeoArabia
 ,
7
,
47
78
.
9.
Allemann
F.
and
Peters
T.
1972
.
The ophiolite-radiolarite belt of the North Oman Mountains
.
Eclogae Geologicae Helvetica
 ,
65
,
657
697
.
10.
ArRajehi
A.
,
McClusky
S.
et al
2010
.
Geodetic constraints on present-day motion of the Arabian Plate: implications for Red Sea and Gulf of Aden rifting
.
Tectonics
 ,
29
,
TC3011
,
11.
Bailey
E.H.
1981
.
Geological map of Muscat-Ibra area, Sultanate of Oman
.
Journal of Geophysical Research
 ,
86
,
2495
2782
,
12.
Bayer
H.-J.
,
Hötzl
H.
,
Jado
A.R.
,
Roscher
B.
and
Voggenreiter
W.
1988
.
Sedimentary and structural evolution of the northwest Arabian Sea Margin
.
Tectonophysics
 ,
153
,
137
152
,
13.
Béchennec
F.
,
Beurrier
M.
,
Hutin
G.
and
Rabu
D.
1986a
.
Geological map of Barka, sheet NF 40-3B, scale 1:100,000, Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
14.
Béchennec
F.
,
Beurrier
M.
,
Rabu
D.
and
Hutin
G.
1986b
.
Geological map of Bahla, sheet NF 40-07A, scale 1:100,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
15.
Béchennec
F.
,
Tegyey
M.
,
Le Métour
J.
,
Lemière
B.
,
Lescuyer
J.L.
,
Rabu
D.
and
Milesi
J.P.
1991
.
Igneous rocks in the Hawasina Nappes and the Hajar Supergroup, Oman Mountains: Their significance in the birth and evolution of the composite extensional Margin of the eastern Tethys
. In:
Peters
T.
,
Nicolas
A.
and
Coleman
R.J.
(eds)
Ophiolite Genesis and Evolution of the Oceanic Lithosphere
 .
Proceedings of the Ophiolite Conference
,
Muscat, Oman
.
Kluwer Academic Publishers, Dordrecht/Boston/London
,
1990
,
593
611
.
16.
Béchennec
F.
,
Roger
J.
,
Le Métour
J.
and
Wyns
R.
1992a
.
Geological map of Seeb, sheet NF 40-03, scale 1:250,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
17.
Béchennec
F.
,
Wyns
R.
,
Roger
J.
,
Le Métour
J.
and
Chevrel
S.
1992b
.
Geological map of Nazwa, sheet NF 40-07, scale 1:250,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
18.
Béchennec
F.
,
Le Métour
J.
,
Platel
J.P.
and
Roger
J.
1993
.
Geological map of the Sultanate of Oman, scale 1:1,000,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
19.
Bendias
D.
,
Koehrer
B.
,
Obermaier
M.
and
Aigner
T.
2013
.
Mid-Permian Khuff Sequence KS6: paleorelief-influenced facies and sequence patterns in the Lower Khuff time-equivalent strata, Oman Mountains, Sultanate of Oman
.
GeoArabia
 ,
18
,
135
178
.
20.
Beurrier
M.
,
Béchennec
F.
,
Hutin
G.
and
Rabu
D.
1986a
.
Geological map of As Suwayq, sheet NF 40-03A, scale 1:100,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
21.
Beurrier
M.
,
Béchennec
F.
,
Rabu
D.
and
Hutin
G.
1986b
.
Geological map of Rustaq, sheet NF 40-03D, scale 1:100,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
22.
Blendinger
W.
,
van Vliet
A.T.
and
Hughes Clarke
M.W.
1990
.
Updoming, rifting and continental margin development during the Late Paleozoic in northern Oman
.
Geological Society, London, Special Publications
 ,
49
,
27
37
.
23.
Bosworth
W.
,
Huchon
P.
and
McClay
K.
2005
.
The Red Sea and Gulf of Aden Basins
.
Journal of African Earth Sciences
 ,
43
,
334
378
,
24.
British Geological Survey
.
2006
.
Geological Map of the Northern Emirates, 1:250,000 Scale
 .
British Geological Survey
,
Keyworth
.
25.
Burns
S.J.
and
Matter
A.
1993
.
Carbon isotopic record of the latest Proterozoic from Oman
.
Eclogae Geologicae Helvetiae
 ,
86
,
595
607
.
26.
Burns
S.J.
,
Matter
A.
,
Frank
N.
and
Mangini
A.
1998
.
Speleothem-based paleoclimate record from northern Oman
.
Geology
 ,
26
,
499
502
,
27.
Burns
S.J.
,
Fleitmann
D.
,
Matter
A.
,
Neff
U.
and
Mangini
A.
2001
.
Speleothem evidence from Oman for continental pluvial events during interglacial periods
.
Geology
 ,
29
,
623
626
,
28.
Callegari
I.
,
Scharf
A.
et al
2020
.
Gondwana accretion tectonics and implications for the geodynamic evolution of eastern Arabia: first structural evidence of the existence of the Cadomian Orogeny in Oman (Jabal Akhdar Dome, Central Oman Mountains)
.
Journal of Asian Earth Sciences
 ,
187
,
104070
,
29.
Carminati
E.
,
Aldega
L.
,
Smeraglia
L.
,
Scharf
A.
and
Mattern
F.
2019
.
Obduction and collision tectonics in Oman: constraints from structural and thermal analyses
. In:
Rossetti
F.
,
Blanc
A.C.
,
Riguzzi
F.
,
Leroux
E.
,
Pavalopoulos
K.
,
Bellier
O.
and
Kapsimalis
V.
(eds)
The Structural Geology Contribution to the Africa-Eurasia Geology: Basement and Reservoir Structure, Ore Mineralisation and Tectonic Modelling
 ,
Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018
,
IEREK Interdisciplinary Series for Sustainable Development
,
319
321
,
30.
Chauvet
F.
,
Dumont
T.
and
Basile
C.
2009
.
Structures and timing of Permian rifting in the central Oman Mountains (Saih Hatat)
.
Tectonophysics
 ,
475
,
563
574
,
31.
Coffield
D.Q.
1990
.
Structures associated with nappe emplacement and culmination collapse in the Central Oman Mountains
.
Geological Society, London, Special Publications
 ,
49
,
447
458
.
32.
Coleman
R.G.
1981
.
Tectonic setting for ophiolite obduction in Oman
.
Journal of Geophysical Research
 ,
86
,
2497
2508
,
33.
Coleman
R.G.
and
Hopson
C.A.
1981
.
Introduction to the Oman Ophiolite Special Issue
.
Journal of Geophysical Research
 ,
86
,
2495
2496
,
34.
Collins
A.S.
and
Pisarevsky
S.A.
2005
.
Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens
.
Earth-Science Reviews
 ,
71
,
229
270
,
35.
Cooper
D.J.W.
1988
.
Structure and sequence of thrusting in deep-water sediments during ophiolite emplacement in the south-central Oman Mountains
.
Journal of Structural Geology
 ,
10
,
437
485
,
36.
Cowan
R.J.
,
Searle
M.P.
and
Waters
D.J.
2014
.
Structure of the metamorphic sole to the Oman Ophiolite, Sumeini Window and Wadi Tayyin: implications for ophiolite obduction processes
.
Geological Society, London, Special Publications
 ,
392
,
155
175
,
37.
de Gramont
X.
,
Le Métour
J.
and
Villey
M.
1986
.
Geological map of Samad, sheet NF 40-07C, scale 1:100,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
38.
Dercourt
J.
,
Ricou
L.E.
and
Vrielynck
B.
1993
.
Atlas Tethys Palaeoenvironmental Maps
 .
Gauthier-Villars
,
Paris
,
307
.
39.
Droste
H.
1997
.
Stratigraphy of the Lower Paleozoic Haima Supergroup of Oman
.
GeoArabia
 ,
2
,
419
472
.
40.
Droste
H.
2014
.
Petroleum geology of the Sultanate of Oman
.
American Association of Petroleum Geologists, Memoirs
 ,
106
,
713
755
,
41.
El-Shazly
A.K.
and
Coleman
R.G.
1990
.
Metamorphism in the Oman Mountains in relation to the Semail ophiolite emplacement
.
Geological Society, London, Special Publications
 ,
49
,
473
493
.
42.
El-Shazly
A.K.
,
Coleman
R.G.
and
Liou
J.G.
1990
.
Eclogites and blueschists from Northeastern Oman: petrology and P-T evolution
.
Journal of Petrology
 ,
31
,
629
666
,
43.
El-Shazly
A.K.
,
Broker
W.
,
Hacker
B.
and
Calvert
A.
2001
.
Formation and exhumation of blueshists and eclogites from NE Oman: new perspectives from Rb-Sr and 40Ar/39Ar dating
.
Journal of Metamorphic Geology
 ,
19
,
233
248
,
44.
Faqira
M.
,
Rademakers
M.
and
Afifi
A.
2009
.
New insights into the Hercynian Orogeny, and their implications for the Paleozoic Hydrocarbon System in the Arabian Plate
.
GeoArabia
 ,
14
,
199
228
.
45.
Filbrandt
J.B.
,
Al-Dhahab
S.
et al
2006
.
Kinematic interpretation and structural evolution of North Oman, Block 6, since the Late Cretaceous and implications for timing of hydrocarbon migration into Cretaceous reservoirs
.
GeoArabia
 ,
11
,
97
140
.
46.
Forbes
G.A.
,
Jansen
H.S.M.
and
Schreurs
J.
2010
.
Lexicon of Oman Subsurface Stratigraphy. Reference Guide to the Stratigraphy of Oman's Hydrocarbon Basins
 .
Gulf Petrolink, GeoArabia, Special Publication
,
5
.
47.
Fournier
M.
,
Lepvrier
C.
,
Razin
P.
and
Jolivet
L.
2006
.
Late Cretaceous to Paleogene Post-obduction extension and subsequent Neogene compression in the Oman Mountains
.
GeoArabia
 ,
11
,
17
40
.
48.
Fournier
M.
,
Chamot-Rooke
N.
,
Petit
C.
,
Fabbri
O.
,
Huchon
P.
,
Maillot
B.
and
Lepvrier
C.
2008
.
In situ evidence for dextral active motion at the Arabia-India plate boundary
.
Nature Geoscience
 ,
1
,
54
58
,
49.
Fournier
M.
,
Chamot-Rooke
N.
et al
2010
.
Somalia plate kinematics, evolution of the Aden – Owen – Carlsberg triple junction, and opening of the Gulf of Aden
.
Journal of Geophysical Research
 ,
115
,
B04102
,
50.
Gaina
C.
,
van Hinsbergen
D.J.J.
and
Spakman
W.
2015
.
Tectonic interactions between India and Arabia since the Jurassic reconstructed from marine geophysics, ophiolite geology, and seismic tomography
.
Tectonics
 ,
34
,
875
906
,
51.
Glennie
K.W.
1995
.
The Geology of the Oman Mountains: An Outline of their Origin
 . 1st ed.
Scientific Press
,
Beaconsfield
.
52.
Glennie
K.W.
2005
.
The Geology of the Oman Mountains: An Outline of their Origin
 . 2nd ed.
Scientific Press
,
Buckinghamshire
.
53.
Glennie
K.W.
,
Boeuf
M.G.A.
,
Hughes Clarke
M.W.
,
Moody-Stuart
M.
,
Pilaar
W.F.H.
and
Reinhardt
B.M.
1973
.
Late Cretaceous nappes in Oman Mountains and their geological evolution
.
American Association of Petroleum Geologists Bulletin
 ,
57
,
5
27
.
54.
Glennie
K.W.
,
Boeuf
M.G.A.
,
Hughes Clarke
M.W.
,
Moody-Stuart
M.
,
Pilaar
W.
and
Reinhardt
B.M.
1974
.
Geology of the Oman Mountains
Koninklijk Nederlands Geologisch en Mijnbouwkundig Genootschap Transactions
 ,
31
,
423
.
55.
Gnos
E.
,
Immenhauser
A.
and
Peters
T.
1997
.
Late Cretaceous/early Tertiary convergence between the Indian and Arabian plates recorded in ophiolites and related sediments
.
Tectonophysics
 ,
271
,
1
19
,
56.
Goffé
B.
,
Michard
A.
,
Kienast
J.R.
and
le Mer
O.
1988
.
A case of obduction related high P, low T metamorphism in upper crustal nappes, Arabian continental margin, Oman: P-T paths and kinematic interpretation
.
Tectonophysics
 ,
151
,
363
386
,
57.
Grantham
P.J.
,
Lijmbach
G.W.M.
,
Posthuma
J.
,
Clarke
M.W.H.
and
Willnik
R.J.
1988
.
Origin of crude oils in Oman
.
Journal of Petroleum Geology
 ,
11
,
61
80
,
58.
Gregory
R.T.
,
Gray
D.R.
and
Miller
J.M.
1998
.
Tectonics of the Arabian margin associated with the emplacement of the Oman margin along the Ibra transect: new evidence from northeast Saih Hatat
.
Tectonics
 ,
17
,
657
670
,
59.
Grobe
A.
,
Urai
J.L.
,
Littke
R.
and
Lünsdorf
N.K.
2016
.
Hydrocarbon generation and migration under a large overthrust: the carbonate platform under the Semail Ophiolite, Jebel Akhdar, Oman
.
International Journal of Coal Geology
 ,
168
,
3
19
,
60.
Grobe
A.
,
von Hagke
C.
,
Littke
R.
,
Dunkl
I.
,
Wübbeler
F.
,
Muchez
P.
and
Urai
J.L.
2019
.
Tectono-thermal evolution of Oman's Mesozoic passive continental margin under the obducting Semail Ophiolite: a case study of Jebel Akhdar, Oman
.
Solid Earth
 ,
10
,
149
175
,
61.
Guilmette
C.
,
Smit
M.A.
et al
2018
.
Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman
.
Nature Geoscience
 ,
11
,
688
695
,
62.
Hacker
B.R.
and
Mosenfelder
J.L.
1996
.
Metamorphism and deformation along the emplacement thrust of the Semail ophiolite, Oman
.
Earth and Planetary Science Letters
 ,
144
,
435
451
,
63.
Hacker
B.R.
,
Mosenfelder
J.L.
and
Gnos
E.
1996
.
Rapid emplacement of the Oman ophiolite: thermal and geochronical constrains
.
Tectonics
 ,
15
,
1230
1247
,
64.
Hansman
R.J.
,
Ring
U.
,
Thomson
S.N.
,
den Brock
B.
and
Stübner
K.
2017
.
Late Eocene uplift of the Al Hajar Mountains, Oman, supported by stratigraphic and low-temperature thermochronology
.
Tectonics
 ,
36
,
3081
3109
,
65.
Heward
A.P.
2016
.
G.M. Lees (Abu'l Jabal): a pioneering geologist in Oman
.
Al Hajar
 ,
22
,
15
27
.
66.
Heward
A.P.
and
Penney
R.A.
2014
.
Al Khlata glacial deposits in the Oman Mountains and their implications
.
Geological Society, London, Special Publications
 ,
392
,
279
301
,
67.
Hoffmann
G.
,
Meschede
M.
,
Zacke
A.
and
Al Kindi
M.
2016
.
Field Guide to the Geology of Northeastern Oman
 .
Schweizerbart, Geological Field Guides
,
110
,
283
.
68.
Hughes Clarke
M.W.
1988
.
Stratigraphy and rock unit nomenclature in the oil-producing area of interior Oman
.
Journal of Petroleum Geology
 ,
11
,
5
60
,
69.
Hutin
G.
,
Béchennec
F.
,
Beurrier
M.
and
Rabu
D.
1986
.
Geological map of Birkat Al Mawz, sheet NF 40-07B, scale 1:100,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
70.
Immenhauser
A.
1995
.
The Autochthonous Mesozoic Sediment Record on the Masirah Island Ophiolite (Sultanate of Oman)
 .
PhD thesis
,
University of Bern
,
Bern, Switzerland
.
71.
Immenhauser
A.
,
Schreurs
G.
,
Peters
T.
,
Matter
A.
,
Hauser
M.
and
Dumitrica
P.
1998
.
Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batain Group, eastern Oman
.
Eclogae Geolgica Helvetica
 ,
91
,
217
235
.
72.
Immenhauser
A.
,
Schreurs
G.
,
Gnos
E.
,
Oterdoom
W.
and
Hartmann
B.
2000
.
Late Paleozoic to Neogene geodynamic evolution of the northeastern Oman margin
.
Geological Magazine
 ,
137
,
1
18
,
73.
Immerz
P.W.
,
Oterdoom
H.
and
El-Tonbary
M.
2000
.
The Huqf/Haima hydrocarbon system of Oman and the terminal phase of the Pan-African Orogeny: evaporite depositions in a compressive setting
.
4th Middle East Geosciences Conference, GEO 2000
,
GeoArabia, Abstract
,
5
,
113
114
.
74.
Janjou
D.
,
Minoux
L.
,
Beurrier
M.
,
de Gramont
X.
,
Le Métour
J.
and
Villey
M.
1986
.
Geological map of Ibri, sheet NF 40-02F, scale 1:100,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
75.
Kajima
M.
and
Ishii
G.
2012
.
Geological map of Al Ansab, sheet NF 40-3C4/C, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
76.
Kajima
M.
and
Otake
M.
2012
.
Geological map of Yiti, sheet NF 40-4A3/D, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
77.
Kajima
M.
,
Goto
M.
,
Otake
M.
and
Ishii
G.
2012a
.
Geological map of Halban, sheet NF 40-3C3/C, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
78.
Kajima
M.
,
Ishii
G.
and
Goto
M.
2012b
.
Geological map of Ar Rusayl, sheet NF 40-3C3/C, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
79.
Kajima
M.
,
Ishii
G.
,
Goto
M.
and
Otake
M.
2012c
.
Geological map of Muscat, sheet NF 40-4A3/C, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
80.
Kajima
M.
,
Ishii
G.
,
Otake
M.
and
Goto
M.
2012d
.
Geological map of Al Khuwayr, sheet NF 40-3C4/D, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
81.
Kajima
M.
et al
2012e
.
Geological map of Al Manumah, sheet NF 40-3C3/A, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
82.
Kajima
M.
et al
2012f
.
Geological map of As Seeb, sheet NF 40-3C3/B, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
83.
Kilner
B.
,
Mac Niocaill
C.
and
Brasier
M.
2005
.
Low-latitude glaciation in the Neoproterozoic of Oman
.
Geology
 ,
33
,
413
416
,
84.
Koehrer
B.
,
Aigner
T.
and
Pöppelreiter
M.
2011
.
Field-scale geometries of Upper Khuff reservoir geobodies in an outcrop analogue (Oman Mountains, Sultanate of Oman)
.
Petroleum Geoscience
 ,
17
,
3
16
,
85.
Konert
G.
,
Afifi
A.M.
,
Al-Hajri
S.A.
and
Droste
H.J.
2001
.
Paleozoic stratigraphy and hydrocarbon habitat of the Arabian Plate
.
GeoArabia
 ,
6
,
407
442
.
86.
Koopman
A.
,
van der Berg
M.
,
Romine
K.
and
Teasdale
J.
2007
.
Proterozoic to Cambrian plate-tectonics and its control on the structural evolution of the Ara Salt-Basin in Oman
.
Abstract AAPG European Region Conference
,
Athens, Greece
:
AAPG Search and Discovery Article #90072
.
87.
Leather
J.
,
Allen
P.A.
,
Braiser
M.D.
and
Cozzi
A.
2002
.
A Neoproterozoic Snowball Earth under scrutiny: evidence from the Fiq glaciation of Oman
.
Geology
 ,
30
,
891
894
,
88.
Lees
G.M.
1928
.
The geology and tectonics of Oman and parts of southeastern Arabia
.
Quarterly Journal of the Geological Society of London
 ,
84
,
585
670
,
89.
Le Guerroué
E.
,
Allen
P.A.
and
Cozzi
A.
2006a
.
Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: the Neoproterozoic Shuram Formation (Nafun Group, Oman)
.
Precambrian Research
 ,
144
,
68
92
,
90.
Le Guerroué
E.
,
Allen
P.
,
Cozzi
A.
,
Etienne
J.L.
and
Fanning
M.
2006b
.
50 Myr recovery from the largest negative δ13C excursion in the Ediacaran ocean
.
Terra Nova
 ,
18
,
147
153
,
91.
Le Métour
J.
,
Villey
M.
and
de Gramont
X.
1986a
.
Geological map of Masqat, sheet NF 40-4A, scale 1:100,000, Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
92.
Le Métour
J.
,
Villey
M.
and
de Gramont
X.
1986b
.
Geological map of Quryat, sheet NF 40-4D, scale 1:100,000, Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
93.
Le Métour
J.F.
,
Béchennec
F.
,
Roger
J.
and
Wyns
R.
1992
.
Geological map of Muscat, sheet NF40-04, scale 1:250,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
94.
Le Métour
J.F.
,
Michel
J.C.
,
Béchennec
F.
,
Platel
J.P.
and
Roger
J.
1995
.
Geology and mineral wealth of the Sultanate of Oman
 .
Directorate General of Minerals. Oman Ministry of Petroleum and Mineral
.
95.
Lippard
S.J.
1983
.
Cretaceous high pressure metamorphism in NE Oman and its relationship to subduction and ophiolite nappe emplacement
.
Journal of Geological Society London
 ,
140
,
97
104
,
96.
Lippard
S.J.
,
Shelton
A.W.
and
Gass
I.G.
1986
.
The ophiolite of northern Oman
.
Geological Society, London, Memoirs
 ,
11
,
178
.
97.
Loosveld
R.J.H.
,
Bell
A.
and
Terken
J.J.M.
1996
.
The tectonic evolution of interior Oman
.
GeoArabia
 ,
1
,
28
51
.
98.
Makris
J.
and
Rihm
R.
1991
.
Shear controlled evolution of Red Sea: pull apart model
.
Tectonophysics
 ,
198
,
441
446
,
99.
Mann
A.
and
Hanna
S.S.
1990
.
The tectonic evolution of pre-Permian rocks, Central and Southeastern Oman Mountains
.
Geological Society, London, Special Publications
 ,
49
,
307
325
.
100.
Marquer
D.
,
Peters
T.
and
Gnos
E.
1995
.
A new structural interpretation for the emplacement of the Masirah Ophiolites (Oman): a main Paleocene intra-oceanic thrust
.
Geodinimica Acta
 ,
8
,
13
19
,
101.
Marquer
D.
,
Mercolli
I.
and
Peters
T.
1998
.
Early Cretaceous intra-oceanic rifting in the Proto-Indian Ocean recorded in the Masirah Ophiolite, Sultanate of Oman
.
Tectonophysics
 ,
292
,
1
16
,
102.
Mattern
F.
,
Moraetis
D.
et al
2018
.
Coastal dynamics of uplifted and emerged Late Pleistocene near-shore coral patch reefs at Fins (eastern coastal Oman, Gulf of Oman)
.
Journal of African Earth Sciences
 ,
138
,
192
200
,
103.
McClusky
S.
,
Reilinger
R.
,
Mahmoud
S.
,
Ben Sari
D.
and
Tealeb
A.
2003
.
GPS constraints on Africa (Nubia) and Arabia plate motions
.
Geophysical Journal International
 ,
155
,
126
138
,
104.
Monthereau
F.
2011
.
Timing of uplift in the Zagros belt/Iranian plateau and accommodation of late Cenozoic Arabia-Eurasia convergence
.
Geological Magazine
 ,
148
,
726
738
,
105.
Moraetis
D.
,
Mattern
F.
,
Scharf
A.
,
Frijia
G.
,
Kusky
T.M.
,
Yuan
Y.
and
Hussain
I.L.
2018
.
Neogene to Quaternary uplift history along the passive margin of the northeastern Arabian Peninsula eastern Hajar Mountains, Oman
.
Quaternary Research
 ,
90
,
418
434
,
106.
Moseley
F.
1990
.
The structure of Masirah Island, Oman
.
Geological Society, London, Special Publications
 ,
49
,
665
671
.
107.
Moseley
F.
and
Abbotts
I.L.
1979
.
The ophiolite mélange of Masirah, Oman
.
Journal of the Geological Society
 ,
136
,
713
724
,
108.
Mountain
G.S.
and
Prell
W.L.
1990
.
A multiphase plate tectonic history of the southeast continental margin of Oman
.
Geological Society, London, Special Publications
 ,
49
,
725
743
.
109.
Nicolas
A.
1989
.
Structures of Ophiolites and Dynamics of Oceanic Lithosphere
 .
Netherlands, Kluwer
, p.
367
.
110.
Nicolas
A.
,
Boudier
F.
and
Ildefonse
B.
1996
.
Variable crustal thickness in the Oman ophiolite: implications for oceanic crust
.
Journal of Geophysical Research
 ,
101
,
17,941
17,950
,
111.
Nicolas
A.
,
Boudier
F.
,
Ildefonse
B.
and
Ball
E.
2000
.
Accretion of Oman and United Arab Emirates ophiolite: discussion of a new structural map
.
Marine Geophysical Researches
 ,
21
,
147
179
,
112.
Peters
T.
and
Mercolli
I.
1997
.
Formation and evolution of the Masirah Ophiolite (Sultanate of Oman)
.
Ofioliti
 ,
22
,
15
34
.
113.
Peters
T.
,
Immenhauser
A.
,
Mercolli
I.
and
Meyer
J.
1995
.
Geological map of Masirah North and Masirah South
 .
Explanatory notes, scale 1:50,000, sheet K768 North and K768 South
.
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
,
Muscat, Oman
.
114.
Peters
T.
,
Blechschmidt
I.
,
Krystyn
L.
,
Dumitrica
P.
,
Mercolli
I.
,
El Amin
O.
and
Al Towaya
A.
2005
.
Geological map of Ibra. Explanatory notes, sheet NF 40-08A, scale 1:100,000
 .
Directorate General of Minerals, Ministry of Commerce and Industry of Oman
.
115.
Philip
J.
,
Borgomano
J.
and
Al-Maskiry
S.
1995
.
Cenomanian–Early Turonian carbonate platform of Northern Oman: stratigraphy and palaeo-environments
.
Palaeogeography, Palaeoclimatology, Palaeoecology
 ,
119
,
77
92
,
116.
Pöppelreiter
M.C.
,
Schneider
C.J.
,
Obermaier
M.
,
Forke
H.C.
,
Koehrer
B.
and
Aigner
T.
2011
.
Seal turns into reservoir: Sudair equivalents in outcrop, Al Jabal al-Akhdar, Sultanate of Oman
.
GeoArabia
 ,
16
,
69
108
.
117.
Poupeau
G.
,
Saddiqi
O.
,
Michard
A.
,
Goffé
B.
and
Oberhänsli
R.
1998
.
Late thermal evolution of the Oman Mountains subophiolitic windows: apatite fission-track thermochronology
.
Geology
 ,
26
,
1139
1142
,
118.
Rabu
D.
1987
.
Géologie de l'Autochtone des Montagnes d'Oman: la fenêtre du Jabal Akhdar
 .
La semelle métamorphique de la Nappe ophiolitique de Samail dans les parties orientaler et central des Montagnes d'Oman: une revue. PhD thesis, Pierre and Marie University, Paris 6, France, Bureau de Recherches Géologiques et Minières, Document No. 130
.
119.
Rabu
D.
,
Béchennec
F.
,
Beurrier
M.
and
Hutin
G.
1986
.
Geological map of Nakhl, sheet NF40-3E, scale: 1:100,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
120.
Regard
V.
,
Bellier
O.
et al
2005
.
Cumulative right-lateral fault slip rate across the Zagros-Makran transfer zone: role of the Minab-Zendan fault system in accommodating Arabia-Eurasia convergence in southeast Iran
.
Geophysical Journal International
 ,
162
,
177
203
,
121.
Reilinger
R.
,
McClusky
S.
et al
2006
.
GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions
.
Journal of Geophysical Research
 ,
111
,
B05411
,
122.
Reilinger
R.
and
McClusky
S.
2011
.
Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics
.
Geophysical Journal International
 ,
186
,
971
979
,
123.
Reinhardt
B.M.
1969
.
On the genesis and emplacement of ophiolites in the Oman Mountains geosyncline
.
Schweizerische Mineralogische und Petrographische Mitteilungen
 ,
49
,
1
30
.
124.
Ries
A.C.
and
Shackleton
R.M.
1990
.
Structures in the Huqf-Haushi uplift, east central Oman
.
Geological Society, London, Special Publications
 ,
49
,
653
663
.
125.
Rioux
M.
,
Bowring
S.A.
,
Kelemen
P.B.
,
Gordon
S.
,
Dudás
F.
and
Miller
R.
2012
.
Rapid crustal accretion and magma assimilation in the Oman-U.A.E. ophiolite: high precision U-Pb zircon geochronology of the gabbroic crust
.
Journal of Geophysical Research
 ,
117
,
B07201
,
126.
Rioux
M.
,
Bowring
S.
,
Kelemen
P.
,
Gordon
S.
,
Miller
R.
and
Dudás
F.
2013
.
Tectonic development of the Samail ophiolite: high-precision U-Pb zircon geochronology and Sm-Nd isotopic constraints on crustal growth and emplacement
.
Journal of Geophysical Research: Solid Earth
 ,
118
,
2085
2101
,
127.
Rioux
M.
,
Garber
J.
,
Bauer
A.
,
Bowring
S.
,
Searle
M.P.
,
Kelemen
P.
and
Hacker
B.
2016
.
Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: new constraints on the tectonic evolution during ophiolite formation from high-precision U-Pb zircon geochronology
.
Earth and Planetary Science Letters
 ,
451
,
185
195
,
128.
Robertson
A.H.F.
and
Searle
M.P.
1990
.
The northern Oman Tethyan continental margin: stratigraphy, structure, concepts and controversies
.
Geological Society, London, Special Publications
 ,
49
,
3
25
.
129.
Robertson
A.H.F.
,
Searle
M.P.
and
Ries
A.C.
1990
.
The Geology and Tectonics of the Oman Regions
 .
Geological Society, London, Special Publications
,
49
.
130.
Rodgers
D.W.
and
Gunatilaka
A.
2002
.
Bajada formation by monsoonal erosion of a subaerial forebulge, Sultanate of Oman
.
Sedimentary Geology
 ,
154
,
127
146
,
131.
Roger
J.
,
Béchennec
F.
,
Janjou
D.
,
Le Métour
J.
,
Wyns
R.
and
Beurrier
M.
1991
.
Geological map of Ja'alan, sheet NF 40-08E, scale:100,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
132.
Rollinson
H.
2017
.
Masirah – The other Oman ophiolite: a better analogue for mid-ocean ridge processes?
Geoscience Frontiers
 ,
8
,
1253
1262
,
133.
Rollinson
H.R.
,
Searle
M.P.
,
Abbasi
I.A.
,
Al-Lazki
A.I.
and
Al Kindi
M.H.
2014
.
Tectonic Evolution of the Oman Mountains
.
Geological Society, London, Special Publications
 ,
392
.
134.
Saddiqi
O.
,
Michard
A.
,
Goffé
B.
,
Poupeau
G.
and
Oberhänsli
R.
2006
.
Fission-track thermochronology of the Oman Mountains continental widows, and current problems of tectonic interpretation
.
Bulletin de la Société Géologique de France
 ,
177
,
127
134
,
135.
Scharf
A.
,
Mattern
F.
et al
2021a
.
Tectonostratigraphy of the eastern part of the Oman Mountains
.
Geological Society, London, Memoirs
 ,
54
,
11
47
,
136.
Scharf
A.
,
Mattern
F.
et al
2021b
.
Thrusts, extensional faults and fold patterns of the major units
.
Geological Society, London, Memoirs
 ,
54
,
49
60
,
137.
Scharf
A.
,
Mattern
F.
et al
2021c
.
Large-scale structure of the study area
.
Geological Society, London, Memoirs
 ,
54
,
61
66
,
138.
Scharf
A.
,
Mattern
F.
et al
2021d
.
Tectonic evolution of the Oman Mountains
.
Geological Society, London, Memoirs
 ,
54
,
67
104
,
139.
Scharf
A.
,
Mattern
F.
et al
2021e
.
Conclusions, differences between the Jabal Akhdar and Saih Hatat domes and unanswered questions
.
Geological Society, London, Memoirs
 ,
54
,
105
111
,
140.
Scharf
A.
,
Mattern
F.
et al
2021f
.
Appendices to: The Geology and Tectonics of the Jabal Akhdar and Saih Hatat Domes, Oman Mountains
.
Geological Society, London, Memoirs
 ,
54
,
113
116
,
141.
Schreurs
G.
and
Immenhauser
A.
1999
.
West-northwest directed obduction of the Batain Group on the eastern Oman continental margin at the Cretaceous-Tertiary boundary
.
Tectonics
 ,
18
,
148
160
,
142.
Searle
M.P.
2007
.
Structural geometry, style and timing of deformation in the Hawasina Window, Al Jabal al Akhdar and Saih Hatat culminations, Oman Mountains
.
GeoArabia
 ,
12
,
99
130
.
143.
Searle
M.P.
2019
.
Geology of the Oman Mountains, Eastern Arabia
 .
Springer
.
144.
Searle
M.P.
and
Cox
J.S.
1999
.
Tectonic setting, origin and obduction of the Oman ophiolite
.
Geological Society of America Bulletin
 ,
111
,
104
122
,
145.
Searle
M.P.
and
Cox
J.S.
2002
.
Subduction zone metamorphism during formation and emplacement of the Semail Ophiolite in the Oman Mountains
.
Geological Magazine
 ,
139
,
241
255
,
146.
Searle
M.P.
and
Malpas
J.
1980
.
Structure and metamorphism of rocks beneath the Semail ophiolite of Oman and their significance in ophiolite obduction
.
Earth and Environmental Science, Transactions of the Royal Society of Edinburgh
 ,
71
,
247
262
,
147.
Searle
M.P.
,
Waters
D.J.
,
Martin
H.N.
and
Rex
D.C.
1994
.
Structure and metamorphism of blueschist – eclogite facies rocks from the northeastern Oman Mountains
.
Journal of Geological Society, London
 ,
151
,
555
576
,
148.
Searle
M.P.
,
Warren
C.J.
,
Waters
D.J.
and
Parrish
R.R.
2004
.
Structural evolution, metamorphism and restoration of the Arabian continental margin, Saih Hatat region, Oman Mountains
.
Journal of Structural Geology
 ,
26
,
451
473
,
149.
Sella
G.F.
,
Dixon
T.H.
and
Mao
A.
2002
.
Revel: a model for Recent plate velocities from space geodesy
.
Journal of Geophysical Research
 ,
107
,
2018
,
150.
Shackleton
R.M.
and
Ries
A.C.
1990
.
Tectonics of the Masirah fault zone and eastern Oman
.
Geological Society, London, Special Publications
 ,
49
,
715
724
.
151.
Shackleton
R.M.
,
Ries
A.C.
,
Bird
P.R.
,
Filbrandt
J.B.
,
Lee
C.W.
and
Cunningham
C.C.
1990
.
The Batain mélange of NE Oman
.
Geological Society, London, Special Publications
 ,
49
,
673
696
.
152.
Sharland
P.R.
,
Casey
D.M.
,
Davies
R.B.
,
Simmons
M.D.
and
Sutcliffe
O.E.
2004
.
Arabian Plate Sequence Stratigraphy – revisions to SP2
.
GeoArabia
 ,
9
,
199
214
.
153.
Skelton
P.W.
,
Nolan
S.C.
and
Scott
R.W.
1990
.
The Maastrichtian transgression onto the northwestern flank of the Proto-Oman Mountains: sequences of rudist-bearing beach to open shelf facies
.
Geological Society, London, Special Publications
 ,
49
,
521
547
.
154.
Smewing
J.D.
,
Abbotts
I.L.
,
Dunne
L.A.
and
Rex
D.C.
1991
.
Formation and emplacement ages of the Masirah ophiolite, Sultanate of Oman
.
Geology
 ,
19
,
453
456
,
155.
Soret
M.
,
Agard
P.
,
Dubacq
B.
,
Plunder
A.
and
Yamato
P.
2017
.
Petrological evidence for stepwise accretion of metamorphic soles during subduction infancy (Semail ophiolite, Oman and UAE)
.
Journal of Metamorphic Geology
 ,
35
,
1051
1080
,
156.
Stampfli
G.M.
and
Borel
G.D.
2002
.
A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons
.
Earth and Planetary Science Letters
 ,
196
,
17
33
,
157.
Stampfli
G.M.
and
Kozur
H.W.
2006
.
Europe from the Variscan to the Alpine cycles
.
Geological Society, London, Memoirs
 ,
32
,
57
82
,
158.
Stern
R.J.
1994
.
Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland
.
Annual Reviews Earth and Planetary Science
 ,
22
,
319
351
,
159.
Svendsen
N.B.
2004
.
The Sahmah Formation of Oman: exploration implications for the Rub’ Al-Khali Basin
.
GeoArabia
 ,
9
,
119
136
.
160.
van Buchem
F.S.P.
,
Razin
P.
,
Homewood
P.W.
,
Oterdoom
W.H.
and
Philip
J.
2002
.
Stratigraphic organization of carbonate ramps and organic-rich intrashelf basins: Natih Formation (middle Cretaceous) of northern Oman
.
American Association of Petroleum Geologists Bulletin
 ,
86
,
21
53
.
161.
van Hinsbergen
D.J.J.
,
Maffione
M.
,
Koornneef
L.M.T.
and
Guilmette
C.
2019
.
Kinematic and paleomagnetic restoration of the Semail ophiolite (Oman) reveals subduction initiation along an ancient Neotethyan fracture zone
.
Earth and Planetary Science Letters
 ,
518
,
183
196
,
162.
Vernant
P.
,
Nilforoushan
F.
et al
2004
.
Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman
.
Geophysical Journal International
 ,
157
,
381
398
,
163.
Vigny
C.
,
Huchon
P.
,
Ruegg
J.-C.
,
Khanbari
K.
and
Asfaw
L.M.
2006
.
Confirmation of Arabia plate slow motion by new GPS data in Yemen
.
Journal of Geophysical Research
 ,
111
,
B02402
,
164.
Villey
M.
,
Béchennec
F.
,
Beurrier
M.
,
Le Métour
J.
and
Rabu
D.
1986a
.
Geological map of Yanqul, sheet NF 40-2C, scale: 1:100,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
165.
Villey
M.
,
de Gramont
X.
and
Le Métour
J.
1986b
.
Geological map of Seeb, sheet NF 40-3C, scale: 1:100,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
166.
Villey
M.
,
Le Métour
J.
and
de Gramont
X.
1986c
.
Geological map of Fanjah, sheet NF 40-3F, scale: 1:100,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
167.
Walley
C.D.
1998
.
Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region
.
Tectonophysics
 ,
298
,
37
62
,
168.
Warren
C.J.
,
Parrish
R.R.
,
Searle
M.P.
and
Waters
D.J.
2003
.
Dating the subduction of the Arabian continental margin beneath the Semail Ophiolite
.
Geology
 ,
31
,
889
892
,
169.
Warren
C.J.
,
Parrish
R.R.
,
Waters
D.J.
and
Searle
M.P.
2005
.
Dating the geologic history of Oman's Semail ophiolite: insight from U-Pb geochronology
.
Contributions to Mineralogy and Petrology
 ,
150
,
403
422
,
170.
Wyns
R.
,
Béchennec
F.
,
Le Métour
J.
and
Roger
J.
1992
.
Geological map of Tiwi, sheet NF40-8B, scale 1:100,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.

Figures & Tables

Fig. 1.1.

Tectonic overview map of the northeastern Arabian Peninsula. Because of the scale, the metamorphic sole (black) below the ophiolite is only visible in certain areas. All arrows indicate the movement direction of the Semail Ophiolite during the Cenomanian–Maastrichtian. HW, Hawasina Window; JAD, Jabal Akhdar Dome; SHD, Saih Hatat Dome. Map modified after the Geological Map of Oman, 1:1 000 000, Ministry of Petroleum and Minerals (Béchennec et al. 1993). Batain Mélange after Shackleton et al. (1990), Schreurs and Immenhauser (1999) and Immenhauser et al. (2000). Orientation of sheeted dykes and movement direction of the Semail Ophiolite is after Hacker et al. (1996). The Makran– and Minab–Zendan thrusts are from Regard et al. (2005). The Ja'alan and Qalhat faults are drawn after Fournier et al. (2006) and the Maradi Fault is drawn after Filbrandt et al. (2006). Parts of the northern Oman Mountains are drawn after the geological map from the United Arab Emirates (UAE) (British Geological Survey 2006). The box outlines the main figure A.1 (Scharf et al. 2021f, Chapter 7, this Memoir). Inset shows the greater study realm and the occurrence of the Masirah Ophiolite.

Fig. 1.1.

Tectonic overview map of the northeastern Arabian Peninsula. Because of the scale, the metamorphic sole (black) below the ophiolite is only visible in certain areas. All arrows indicate the movement direction of the Semail Ophiolite during the Cenomanian–Maastrichtian. HW, Hawasina Window; JAD, Jabal Akhdar Dome; SHD, Saih Hatat Dome. Map modified after the Geological Map of Oman, 1:1 000 000, Ministry of Petroleum and Minerals (Béchennec et al. 1993). Batain Mélange after Shackleton et al. (1990), Schreurs and Immenhauser (1999) and Immenhauser et al. (2000). Orientation of sheeted dykes and movement direction of the Semail Ophiolite is after Hacker et al. (1996). The Makran– and Minab–Zendan thrusts are from Regard et al. (2005). The Ja'alan and Qalhat faults are drawn after Fournier et al. (2006) and the Maradi Fault is drawn after Filbrandt et al. (2006). Parts of the northern Oman Mountains are drawn after the geological map from the United Arab Emirates (UAE) (British Geological Survey 2006). The box outlines the main figure A.1 (Scharf et al. 2021f, Chapter 7, this Memoir). Inset shows the greater study realm and the occurrence of the Masirah Ophiolite.

Fig. 1.2.

Present tectonic frame of the Arabian Peninsula slightly modified after Hansman et al. (2017). Plate velocity from GPS information (Sella et al. 2002; McClusky et al. 2003; Reilinger et al. 2006; Vigny et al. 2006; ArRajehi et al. 2010). Forebulge axis in the Oman Mountains is after Rodgers and Gunatilaka (2002). Cross-section for the trace (A-A′) is depicted in figure 5.14 (Scharf et al. 2021d, Chapter 5, this Memoir).

Fig. 1.2.

Present tectonic frame of the Arabian Peninsula slightly modified after Hansman et al. (2017). Plate velocity from GPS information (Sella et al. 2002; McClusky et al. 2003; Reilinger et al. 2006; Vigny et al. 2006; ArRajehi et al. 2010). Forebulge axis in the Oman Mountains is after Rodgers and Gunatilaka (2002). Cross-section for the trace (A-A′) is depicted in figure 5.14 (Scharf et al. 2021d, Chapter 5, this Memoir).

Contents

GeoRef

References

References

1.
Abbo
A.
,
Avigad
D.
and
Gerdes
A.
2018
.
The lower crust of the northern broken edge of Gondwana: evidence for sediment subduction and syn-Variscan anorogenic imprint from zircon U-Pb-Hf in granulite xenoliths
.
Gondwana Research
 ,
64
,
84
96
,
2.
Agard
P.
,
Omrani
J.
et al
2011
.
Zagros orogeny: a subduction-dominated process
.
Geological Magazine
 ,
148
,
692
725
,
3.
Aldega
L.
,
Carminati
E.
,
Scharf
A.
,
Mattern
F.
and
Al-Wardi
M.
2017
.
Estimating original thickness and extent of the Semail Ophiolite in the eastern Oman Mountains by paleothermal indicators
.
Marine and Petroleum Geology
 ,
84
,
18
33
,
4.
Al-Husseini
M.I.
2000
.
Origin of the Arabian Plate Structures: Amar Collision and Najd Rift
.
GeoArabia
 ,
5
,
527
542
.
5.
Al-Husseini
M.I.
2004
.
Pre-Unayzah unconformity, Saudi Arabia. Carboniferous, Permian and Early Triassic Arabian Stratigraphy
.
GeoArabia Special Publication
 ,
3
,
15
59
.
6.
Al-Kindi
M.H.
2018
.
Evolution of Land and Life in Oman: An 800 Million Year Story
 .
Springer
,
7.
Al-Kindi
M.H.
and
Richard
P.D.
2014
.
The main structural styles of the hydrocarbon reservoirs in Oman
.
Geological Society, London, Special Publications
 ,
392
,
409
445
,
8.
Al-Lazki
A.I.
,
Seber
D.
,
Sandvol
E.
and
Barazangi
M.
2002
.
A crustal transect across the Oman Mountains on the eastern margin of Arabia
.
GeoArabia
 ,
7
,
47
78
.
9.
Allemann
F.
and
Peters
T.
1972
.
The ophiolite-radiolarite belt of the North Oman Mountains
.
Eclogae Geologicae Helvetica
 ,
65
,
657
697
.
10.
ArRajehi
A.
,
McClusky
S.
et al
2010
.
Geodetic constraints on present-day motion of the Arabian Plate: implications for Red Sea and Gulf of Aden rifting
.
Tectonics
 ,
29
,
TC3011
,
11.
Bailey
E.H.
1981
.
Geological map of Muscat-Ibra area, Sultanate of Oman
.
Journal of Geophysical Research
 ,
86
,
2495
2782
,
12.
Bayer
H.-J.
,
Hötzl
H.
,
Jado
A.R.
,
Roscher
B.
and
Voggenreiter
W.
1988
.
Sedimentary and structural evolution of the northwest Arabian Sea Margin
.
Tectonophysics
 ,
153
,
137
152
,
13.
Béchennec
F.
,
Beurrier
M.
,
Hutin
G.
and
Rabu
D.
1986a
.
Geological map of Barka, sheet NF 40-3B, scale 1:100,000, Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
14.
Béchennec
F.
,
Beurrier
M.
,
Rabu
D.
and
Hutin
G.
1986b
.
Geological map of Bahla, sheet NF 40-07A, scale 1:100,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
15.
Béchennec
F.
,
Tegyey
M.
,
Le Métour
J.
,
Lemière
B.
,
Lescuyer
J.L.
,
Rabu
D.
and
Milesi
J.P.
1991
.
Igneous rocks in the Hawasina Nappes and the Hajar Supergroup, Oman Mountains: Their significance in the birth and evolution of the composite extensional Margin of the eastern Tethys
. In:
Peters
T.
,
Nicolas
A.
and
Coleman
R.J.
(eds)
Ophiolite Genesis and Evolution of the Oceanic Lithosphere
 .
Proceedings of the Ophiolite Conference
,
Muscat, Oman
.
Kluwer Academic Publishers, Dordrecht/Boston/London
,
1990
,
593
611
.
16.
Béchennec
F.
,
Roger
J.
,
Le Métour
J.
and
Wyns
R.
1992a
.
Geological map of Seeb, sheet NF 40-03, scale 1:250,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
17.
Béchennec
F.
,
Wyns
R.
,
Roger
J.
,
Le Métour
J.
and
Chevrel
S.
1992b
.
Geological map of Nazwa, sheet NF 40-07, scale 1:250,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
18.
Béchennec
F.
,
Le Métour
J.
,
Platel
J.P.
and
Roger
J.
1993
.
Geological map of the Sultanate of Oman, scale 1:1,000,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
19.
Bendias
D.
,
Koehrer
B.
,
Obermaier
M.
and
Aigner
T.
2013
.
Mid-Permian Khuff Sequence KS6: paleorelief-influenced facies and sequence patterns in the Lower Khuff time-equivalent strata, Oman Mountains, Sultanate of Oman
.
GeoArabia
 ,
18
,
135
178
.
20.
Beurrier
M.
,
Béchennec
F.
,
Hutin
G.
and
Rabu
D.
1986a
.
Geological map of As Suwayq, sheet NF 40-03A, scale 1:100,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
21.
Beurrier
M.
,
Béchennec
F.
,
Rabu
D.
and
Hutin
G.
1986b
.
Geological map of Rustaq, sheet NF 40-03D, scale 1:100,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
22.
Blendinger
W.
,
van Vliet
A.T.
and
Hughes Clarke
M.W.
1990
.
Updoming, rifting and continental margin development during the Late Paleozoic in northern Oman
.
Geological Society, London, Special Publications
 ,
49
,
27
37
.
23.
Bosworth
W.
,
Huchon
P.
and
McClay
K.
2005
.
The Red Sea and Gulf of Aden Basins
.
Journal of African Earth Sciences
 ,
43
,
334
378
,
24.
British Geological Survey
.
2006
.
Geological Map of the Northern Emirates, 1:250,000 Scale
 .
British Geological Survey
,
Keyworth
.
25.
Burns
S.J.
and
Matter
A.
1993
.
Carbon isotopic record of the latest Proterozoic from Oman
.
Eclogae Geologicae Helvetiae
 ,
86
,
595
607
.
26.
Burns
S.J.
,
Matter
A.
,
Frank
N.
and
Mangini
A.
1998
.
Speleothem-based paleoclimate record from northern Oman
.
Geology
 ,
26
,
499
502
,
27.
Burns
S.J.
,
Fleitmann
D.
,
Matter
A.
,
Neff
U.
and
Mangini
A.
2001
.
Speleothem evidence from Oman for continental pluvial events during interglacial periods
.
Geology
 ,
29
,
623
626
,
28.
Callegari
I.
,
Scharf
A.
et al
2020
.
Gondwana accretion tectonics and implications for the geodynamic evolution of eastern Arabia: first structural evidence of the existence of the Cadomian Orogeny in Oman (Jabal Akhdar Dome, Central Oman Mountains)
.
Journal of Asian Earth Sciences
 ,
187
,
104070
,
29.
Carminati
E.
,
Aldega
L.
,
Smeraglia
L.
,
Scharf
A.
and
Mattern
F.
2019
.
Obduction and collision tectonics in Oman: constraints from structural and thermal analyses
. In:
Rossetti
F.
,
Blanc
A.C.
,
Riguzzi
F.
,
Leroux
E.
,
Pavalopoulos
K.
,
Bellier
O.
and
Kapsimalis
V.
(eds)
The Structural Geology Contribution to the Africa-Eurasia Geology: Basement and Reservoir Structure, Ore Mineralisation and Tectonic Modelling
 ,
Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018
,
IEREK Interdisciplinary Series for Sustainable Development
,
319
321
,
30.
Chauvet
F.
,
Dumont
T.
and
Basile
C.
2009
.
Structures and timing of Permian rifting in the central Oman Mountains (Saih Hatat)
.
Tectonophysics
 ,
475
,
563
574
,
31.
Coffield
D.Q.
1990
.
Structures associated with nappe emplacement and culmination collapse in the Central Oman Mountains
.
Geological Society, London, Special Publications
 ,
49
,
447
458
.
32.
Coleman
R.G.
1981
.
Tectonic setting for ophiolite obduction in Oman
.
Journal of Geophysical Research
 ,
86
,
2497
2508
,
33.
Coleman
R.G.
and
Hopson
C.A.
1981
.
Introduction to the Oman Ophiolite Special Issue
.
Journal of Geophysical Research
 ,
86
,
2495
2496
,
34.
Collins
A.S.
and
Pisarevsky
S.A.
2005
.
Amalgamating eastern Gondwana: the evolution of the Circum-Indian Orogens
.
Earth-Science Reviews
 ,
71
,
229
270
,
35.
Cooper
D.J.W.
1988
.
Structure and sequence of thrusting in deep-water sediments during ophiolite emplacement in the south-central Oman Mountains
.
Journal of Structural Geology
 ,
10
,
437
485
,
36.
Cowan
R.J.
,
Searle
M.P.
and
Waters
D.J.
2014
.
Structure of the metamorphic sole to the Oman Ophiolite, Sumeini Window and Wadi Tayyin: implications for ophiolite obduction processes
.
Geological Society, London, Special Publications
 ,
392
,
155
175
,
37.
de Gramont
X.
,
Le Métour
J.
and
Villey
M.
1986
.
Geological map of Samad, sheet NF 40-07C, scale 1:100,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
38.
Dercourt
J.
,
Ricou
L.E.
and
Vrielynck
B.
1993
.
Atlas Tethys Palaeoenvironmental Maps
 .
Gauthier-Villars
,
Paris
,
307
.
39.
Droste
H.
1997
.
Stratigraphy of the Lower Paleozoic Haima Supergroup of Oman
.
GeoArabia
 ,
2
,
419
472
.
40.
Droste
H.
2014
.
Petroleum geology of the Sultanate of Oman
.
American Association of Petroleum Geologists, Memoirs
 ,
106
,
713
755
,
41.
El-Shazly
A.K.
and
Coleman
R.G.
1990
.
Metamorphism in the Oman Mountains in relation to the Semail ophiolite emplacement
.
Geological Society, London, Special Publications
 ,
49
,
473
493
.
42.
El-Shazly
A.K.
,
Coleman
R.G.
and
Liou
J.G.
1990
.
Eclogites and blueschists from Northeastern Oman: petrology and P-T evolution
.
Journal of Petrology
 ,
31
,
629
666
,
43.
El-Shazly
A.K.
,
Broker
W.
,
Hacker
B.
and
Calvert
A.
2001
.
Formation and exhumation of blueshists and eclogites from NE Oman: new perspectives from Rb-Sr and 40Ar/39Ar dating
.
Journal of Metamorphic Geology
 ,
19
,
233
248
,
44.
Faqira
M.
,
Rademakers
M.
and
Afifi
A.
2009
.
New insights into the Hercynian Orogeny, and their implications for the Paleozoic Hydrocarbon System in the Arabian Plate
.
GeoArabia
 ,
14
,
199
228
.
45.
Filbrandt
J.B.
,
Al-Dhahab
S.
et al
2006
.
Kinematic interpretation and structural evolution of North Oman, Block 6, since the Late Cretaceous and implications for timing of hydrocarbon migration into Cretaceous reservoirs
.
GeoArabia
 ,
11
,
97
140
.
46.
Forbes
G.A.
,
Jansen
H.S.M.
and
Schreurs
J.
2010
.
Lexicon of Oman Subsurface Stratigraphy. Reference Guide to the Stratigraphy of Oman's Hydrocarbon Basins
 .
Gulf Petrolink, GeoArabia, Special Publication
,
5
.
47.
Fournier
M.
,
Lepvrier
C.
,
Razin
P.
and
Jolivet
L.
2006
.
Late Cretaceous to Paleogene Post-obduction extension and subsequent Neogene compression in the Oman Mountains
.
GeoArabia
 ,
11
,
17
40
.
48.
Fournier
M.
,
Chamot-Rooke
N.
,
Petit
C.
,
Fabbri
O.
,
Huchon
P.
,
Maillot
B.
and
Lepvrier
C.
2008
.
In situ evidence for dextral active motion at the Arabia-India plate boundary
.
Nature Geoscience
 ,
1
,
54
58
,
49.
Fournier
M.
,
Chamot-Rooke
N.
et al
2010
.
Somalia plate kinematics, evolution of the Aden – Owen – Carlsberg triple junction, and opening of the Gulf of Aden
.
Journal of Geophysical Research
 ,
115
,
B04102
,
50.
Gaina
C.
,
van Hinsbergen
D.J.J.
and
Spakman
W.
2015
.
Tectonic interactions between India and Arabia since the Jurassic reconstructed from marine geophysics, ophiolite geology, and seismic tomography
.
Tectonics
 ,
34
,
875
906
,
51.
Glennie
K.W.
1995
.
The Geology of the Oman Mountains: An Outline of their Origin
 . 1st ed.
Scientific Press
,
Beaconsfield
.
52.
Glennie
K.W.
2005
.
The Geology of the Oman Mountains: An Outline of their Origin
 . 2nd ed.
Scientific Press
,
Buckinghamshire
.
53.
Glennie
K.W.
,
Boeuf
M.G.A.
,
Hughes Clarke
M.W.
,
Moody-Stuart
M.
,
Pilaar
W.F.H.
and
Reinhardt
B.M.
1973
.
Late Cretaceous nappes in Oman Mountains and their geological evolution
.
American Association of Petroleum Geologists Bulletin
 ,
57
,
5
27
.
54.
Glennie
K.W.
,
Boeuf
M.G.A.
,
Hughes Clarke
M.W.
,
Moody-Stuart
M.
,
Pilaar
W.
and
Reinhardt
B.M.
1974
.
Geology of the Oman Mountains
Koninklijk Nederlands Geologisch en Mijnbouwkundig Genootschap Transactions
 ,
31
,
423
.
55.
Gnos
E.
,
Immenhauser
A.
and
Peters
T.
1997
.
Late Cretaceous/early Tertiary convergence between the Indian and Arabian plates recorded in ophiolites and related sediments
.
Tectonophysics
 ,
271
,
1
19
,
56.
Goffé
B.
,
Michard
A.
,
Kienast
J.R.
and
le Mer
O.
1988
.
A case of obduction related high P, low T metamorphism in upper crustal nappes, Arabian continental margin, Oman: P-T paths and kinematic interpretation
.
Tectonophysics
 ,
151
,
363
386
,
57.
Grantham
P.J.
,
Lijmbach
G.W.M.
,
Posthuma
J.
,
Clarke
M.W.H.
and
Willnik
R.J.
1988
.
Origin of crude oils in Oman
.
Journal of Petroleum Geology
 ,
11
,
61
80
,
58.
Gregory
R.T.
,
Gray
D.R.
and
Miller
J.M.
1998
.
Tectonics of the Arabian margin associated with the emplacement of the Oman margin along the Ibra transect: new evidence from northeast Saih Hatat
.
Tectonics
 ,
17
,
657
670
,
59.
Grobe
A.
,
Urai
J.L.
,
Littke
R.
and
Lünsdorf
N.K.
2016
.
Hydrocarbon generation and migration under a large overthrust: the carbonate platform under the Semail Ophiolite, Jebel Akhdar, Oman
.
International Journal of Coal Geology
 ,
168
,
3
19
,
60.
Grobe
A.
,
von Hagke
C.
,
Littke
R.
,
Dunkl
I.
,
Wübbeler
F.
,
Muchez
P.
and
Urai
J.L.
2019
.
Tectono-thermal evolution of Oman's Mesozoic passive continental margin under the obducting Semail Ophiolite: a case study of Jebel Akhdar, Oman
.
Solid Earth
 ,
10
,
149
175
,
61.
Guilmette
C.
,
Smit
M.A.
et al
2018
.
Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman
.
Nature Geoscience
 ,
11
,
688
695
,
62.
Hacker
B.R.
and
Mosenfelder
J.L.
1996
.
Metamorphism and deformation along the emplacement thrust of the Semail ophiolite, Oman
.
Earth and Planetary Science Letters
 ,
144
,
435
451
,
63.
Hacker
B.R.
,
Mosenfelder
J.L.
and
Gnos
E.
1996
.
Rapid emplacement of the Oman ophiolite: thermal and geochronical constrains
.
Tectonics
 ,
15
,
1230
1247
,
64.
Hansman
R.J.
,
Ring
U.
,
Thomson
S.N.
,
den Brock
B.
and
Stübner
K.
2017
.
Late Eocene uplift of the Al Hajar Mountains, Oman, supported by stratigraphic and low-temperature thermochronology
.
Tectonics
 ,
36
,
3081
3109
,
65.
Heward
A.P.
2016
.
G.M. Lees (Abu'l Jabal): a pioneering geologist in Oman
.
Al Hajar
 ,
22
,
15
27
.
66.
Heward
A.P.
and
Penney
R.A.
2014
.
Al Khlata glacial deposits in the Oman Mountains and their implications
.
Geological Society, London, Special Publications
 ,
392
,
279
301
,
67.
Hoffmann
G.
,
Meschede
M.
,
Zacke
A.
and
Al Kindi
M.
2016
.
Field Guide to the Geology of Northeastern Oman
 .
Schweizerbart, Geological Field Guides
,
110
,
283
.
68.
Hughes Clarke
M.W.
1988
.
Stratigraphy and rock unit nomenclature in the oil-producing area of interior Oman
.
Journal of Petroleum Geology
 ,
11
,
5
60
,
69.
Hutin
G.
,
Béchennec
F.
,
Beurrier
M.
and
Rabu
D.
1986
.
Geological map of Birkat Al Mawz, sheet NF 40-07B, scale 1:100,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
70.
Immenhauser
A.
1995
.
The Autochthonous Mesozoic Sediment Record on the Masirah Island Ophiolite (Sultanate of Oman)
 .
PhD thesis
,
University of Bern
,
Bern, Switzerland
.
71.
Immenhauser
A.
,
Schreurs
G.
,
Peters
T.
,
Matter
A.
,
Hauser
M.
and
Dumitrica
P.
1998
.
Stratigraphy, sedimentology and depositional environment of the Permian to uppermost Cretaceous Batain Group, eastern Oman
.
Eclogae Geolgica Helvetica
 ,
91
,
217
235
.
72.
Immenhauser
A.
,
Schreurs
G.
,
Gnos
E.
,
Oterdoom
W.
and
Hartmann
B.
2000
.
Late Paleozoic to Neogene geodynamic evolution of the northeastern Oman margin
.
Geological Magazine
 ,
137
,
1
18
,
73.
Immerz
P.W.
,
Oterdoom
H.
and
El-Tonbary
M.
2000
.
The Huqf/Haima hydrocarbon system of Oman and the terminal phase of the Pan-African Orogeny: evaporite depositions in a compressive setting
.
4th Middle East Geosciences Conference, GEO 2000
,
GeoArabia, Abstract
,
5
,
113
114
.
74.
Janjou
D.
,
Minoux
L.
,
Beurrier
M.
,
de Gramont
X.
,
Le Métour
J.
and
Villey
M.
1986
.
Geological map of Ibri, sheet NF 40-02F, scale 1:100,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
75.
Kajima
M.
and
Ishii
G.
2012
.
Geological map of Al Ansab, sheet NF 40-3C4/C, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
76.
Kajima
M.
and
Otake
M.
2012
.
Geological map of Yiti, sheet NF 40-4A3/D, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
77.
Kajima
M.
,
Goto
M.
,
Otake
M.
and
Ishii
G.
2012a
.
Geological map of Halban, sheet NF 40-3C3/C, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
78.
Kajima
M.
,
Ishii
G.
and
Goto
M.
2012b
.
Geological map of Ar Rusayl, sheet NF 40-3C3/C, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
79.
Kajima
M.
,
Ishii
G.
,
Goto
M.
and
Otake
M.
2012c
.
Geological map of Muscat, sheet NF 40-4A3/C, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
80.
Kajima
M.
,
Ishii
G.
,
Otake
M.
and
Goto
M.
2012d
.
Geological map of Al Khuwayr, sheet NF 40-3C4/D, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
81.
Kajima
M.
et al
2012e
.
Geological map of Al Manumah, sheet NF 40-3C3/A, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
82.
Kajima
M.
et al
2012f
.
Geological map of As Seeb, sheet NF 40-3C3/B, scale 1:25,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Commerce and Industry
.
83.
Kilner
B.
,
Mac Niocaill
C.
and
Brasier
M.
2005
.
Low-latitude glaciation in the Neoproterozoic of Oman
.
Geology
 ,
33
,
413
416
,
84.
Koehrer
B.
,
Aigner
T.
and
Pöppelreiter
M.
2011
.
Field-scale geometries of Upper Khuff reservoir geobodies in an outcrop analogue (Oman Mountains, Sultanate of Oman)
.
Petroleum Geoscience
 ,
17
,
3
16
,
85.
Konert
G.
,
Afifi
A.M.
,
Al-Hajri
S.A.
and
Droste
H.J.
2001
.
Paleozoic stratigraphy and hydrocarbon habitat of the Arabian Plate
.
GeoArabia
 ,
6
,
407
442
.
86.
Koopman
A.
,
van der Berg
M.
,
Romine
K.
and
Teasdale
J.
2007
.
Proterozoic to Cambrian plate-tectonics and its control on the structural evolution of the Ara Salt-Basin in Oman
.
Abstract AAPG European Region Conference
,
Athens, Greece
:
AAPG Search and Discovery Article #90072
.
87.
Leather
J.
,
Allen
P.A.
,
Braiser
M.D.
and
Cozzi
A.
2002
.
A Neoproterozoic Snowball Earth under scrutiny: evidence from the Fiq glaciation of Oman
.
Geology
 ,
30
,
891
894
,
88.
Lees
G.M.
1928
.
The geology and tectonics of Oman and parts of southeastern Arabia
.
Quarterly Journal of the Geological Society of London
 ,
84
,
585
670
,
89.
Le Guerroué
E.
,
Allen
P.A.
and
Cozzi
A.
2006a
.
Chemostratigraphic and sedimentological framework of the largest negative carbon isotopic excursion in Earth history: the Neoproterozoic Shuram Formation (Nafun Group, Oman)
.
Precambrian Research
 ,
144
,
68
92
,
90.
Le Guerroué
E.
,
Allen
P.
,
Cozzi
A.
,
Etienne
J.L.
and
Fanning
M.
2006b
.
50 Myr recovery from the largest negative δ13C excursion in the Ediacaran ocean
.
Terra Nova
 ,
18
,
147
153
,
91.
Le Métour
J.
,
Villey
M.
and
de Gramont
X.
1986a
.
Geological map of Masqat, sheet NF 40-4A, scale 1:100,000, Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
92.
Le Métour
J.
,
Villey
M.
and
de Gramont
X.
1986b
.
Geological map of Quryat, sheet NF 40-4D, scale 1:100,000, Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
93.
Le Métour
J.F.
,
Béchennec
F.
,
Roger
J.
and
Wyns
R.
1992
.
Geological map of Muscat, sheet NF40-04, scale 1:250,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
94.
Le Métour
J.F.
,
Michel
J.C.
,
Béchennec
F.
,
Platel
J.P.
and
Roger
J.
1995
.
Geology and mineral wealth of the Sultanate of Oman
 .
Directorate General of Minerals. Oman Ministry of Petroleum and Mineral
.
95.
Lippard
S.J.
1983
.
Cretaceous high pressure metamorphism in NE Oman and its relationship to subduction and ophiolite nappe emplacement
.
Journal of Geological Society London
 ,
140
,
97
104
,
96.
Lippard
S.J.
,
Shelton
A.W.
and
Gass
I.G.
1986
.
The ophiolite of northern Oman
.
Geological Society, London, Memoirs
 ,
11
,
178
.
97.
Loosveld
R.J.H.
,
Bell
A.
and
Terken
J.J.M.
1996
.
The tectonic evolution of interior Oman
.
GeoArabia
 ,
1
,
28
51
.
98.
Makris
J.
and
Rihm
R.
1991
.
Shear controlled evolution of Red Sea: pull apart model
.
Tectonophysics
 ,
198
,
441
446
,
99.
Mann
A.
and
Hanna
S.S.
1990
.
The tectonic evolution of pre-Permian rocks, Central and Southeastern Oman Mountains
.
Geological Society, London, Special Publications
 ,
49
,
307
325
.
100.
Marquer
D.
,
Peters
T.
and
Gnos
E.
1995
.
A new structural interpretation for the emplacement of the Masirah Ophiolites (Oman): a main Paleocene intra-oceanic thrust
.
Geodinimica Acta
 ,
8
,
13
19
,
101.
Marquer
D.
,
Mercolli
I.
and
Peters
T.
1998
.
Early Cretaceous intra-oceanic rifting in the Proto-Indian Ocean recorded in the Masirah Ophiolite, Sultanate of Oman
.
Tectonophysics
 ,
292
,
1
16
,
102.
Mattern
F.
,
Moraetis
D.
et al
2018
.
Coastal dynamics of uplifted and emerged Late Pleistocene near-shore coral patch reefs at Fins (eastern coastal Oman, Gulf of Oman)
.
Journal of African Earth Sciences
 ,
138
,
192
200
,
103.
McClusky
S.
,
Reilinger
R.
,
Mahmoud
S.
,
Ben Sari
D.
and
Tealeb
A.
2003
.
GPS constraints on Africa (Nubia) and Arabia plate motions
.
Geophysical Journal International
 ,
155
,
126
138
,
104.
Monthereau
F.
2011
.
Timing of uplift in the Zagros belt/Iranian plateau and accommodation of late Cenozoic Arabia-Eurasia convergence
.
Geological Magazine
 ,
148
,
726
738
,
105.
Moraetis
D.
,
Mattern
F.
,
Scharf
A.
,
Frijia
G.
,
Kusky
T.M.
,
Yuan
Y.
and
Hussain
I.L.
2018
.
Neogene to Quaternary uplift history along the passive margin of the northeastern Arabian Peninsula eastern Hajar Mountains, Oman
.
Quaternary Research
 ,
90
,
418
434
,
106.
Moseley
F.
1990
.
The structure of Masirah Island, Oman
.
Geological Society, London, Special Publications
 ,
49
,
665
671
.
107.
Moseley
F.
and
Abbotts
I.L.
1979
.
The ophiolite mélange of Masirah, Oman
.
Journal of the Geological Society
 ,
136
,
713
724
,
108.
Mountain
G.S.
and
Prell
W.L.
1990
.
A multiphase plate tectonic history of the southeast continental margin of Oman
.
Geological Society, London, Special Publications
 ,
49
,
725
743
.
109.
Nicolas
A.
1989
.
Structures of Ophiolites and Dynamics of Oceanic Lithosphere
 .
Netherlands, Kluwer
, p.
367
.
110.
Nicolas
A.
,
Boudier
F.
and
Ildefonse
B.
1996
.
Variable crustal thickness in the Oman ophiolite: implications for oceanic crust
.
Journal of Geophysical Research
 ,
101
,
17,941
17,950
,
111.
Nicolas
A.
,
Boudier
F.
,
Ildefonse
B.
and
Ball
E.
2000
.
Accretion of Oman and United Arab Emirates ophiolite: discussion of a new structural map
.
Marine Geophysical Researches
 ,
21
,
147
179
,
112.
Peters
T.
and
Mercolli
I.
1997
.
Formation and evolution of the Masirah Ophiolite (Sultanate of Oman)
.
Ofioliti
 ,
22
,
15
34
.
113.
Peters
T.
,
Immenhauser
A.
,
Mercolli
I.
and
Meyer
J.
1995
.
Geological map of Masirah North and Masirah South
 .
Explanatory notes, scale 1:50,000, sheet K768 North and K768 South
.
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
,
Muscat, Oman
.
114.
Peters
T.
,
Blechschmidt
I.
,
Krystyn
L.
,
Dumitrica
P.
,
Mercolli
I.
,
El Amin
O.
and
Al Towaya
A.
2005
.
Geological map of Ibra. Explanatory notes, sheet NF 40-08A, scale 1:100,000
 .
Directorate General of Minerals, Ministry of Commerce and Industry of Oman
.
115.
Philip
J.
,
Borgomano
J.
and
Al-Maskiry
S.
1995
.
Cenomanian–Early Turonian carbonate platform of Northern Oman: stratigraphy and palaeo-environments
.
Palaeogeography, Palaeoclimatology, Palaeoecology
 ,
119
,
77
92
,
116.
Pöppelreiter
M.C.
,
Schneider
C.J.
,
Obermaier
M.
,
Forke
H.C.
,
Koehrer
B.
and
Aigner
T.
2011
.
Seal turns into reservoir: Sudair equivalents in outcrop, Al Jabal al-Akhdar, Sultanate of Oman
.
GeoArabia
 ,
16
,
69
108
.
117.
Poupeau
G.
,
Saddiqi
O.
,
Michard
A.
,
Goffé
B.
and
Oberhänsli
R.
1998
.
Late thermal evolution of the Oman Mountains subophiolitic windows: apatite fission-track thermochronology
.
Geology
 ,
26
,
1139
1142
,
118.
Rabu
D.
1987
.
Géologie de l'Autochtone des Montagnes d'Oman: la fenêtre du Jabal Akhdar
 .
La semelle métamorphique de la Nappe ophiolitique de Samail dans les parties orientaler et central des Montagnes d'Oman: une revue. PhD thesis, Pierre and Marie University, Paris 6, France, Bureau de Recherches Géologiques et Minières, Document No. 130
.
119.
Rabu
D.
,
Béchennec
F.
,
Beurrier
M.
and
Hutin
G.
1986
.
Geological map of Nakhl, sheet NF40-3E, scale: 1:100,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
120.
Regard
V.
,
Bellier
O.
et al
2005
.
Cumulative right-lateral fault slip rate across the Zagros-Makran transfer zone: role of the Minab-Zendan fault system in accommodating Arabia-Eurasia convergence in southeast Iran
.
Geophysical Journal International
 ,
162
,
177
203
,
121.
Reilinger
R.
,
McClusky
S.
et al
2006
.
GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions
.
Journal of Geophysical Research
 ,
111
,
B05411
,
122.
Reilinger
R.
and
McClusky
S.
2011
.
Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics
.
Geophysical Journal International
 ,
186
,
971
979
,
123.
Reinhardt
B.M.
1969
.
On the genesis and emplacement of ophiolites in the Oman Mountains geosyncline
.
Schweizerische Mineralogische und Petrographische Mitteilungen
 ,
49
,
1
30
.
124.
Ries
A.C.
and
Shackleton
R.M.
1990
.
Structures in the Huqf-Haushi uplift, east central Oman
.
Geological Society, London, Special Publications
 ,
49
,
653
663
.
125.
Rioux
M.
,
Bowring
S.A.
,
Kelemen
P.B.
,
Gordon
S.
,
Dudás
F.
and
Miller
R.
2012
.
Rapid crustal accretion and magma assimilation in the Oman-U.A.E. ophiolite: high precision U-Pb zircon geochronology of the gabbroic crust
.
Journal of Geophysical Research
 ,
117
,
B07201
,
126.
Rioux
M.
,
Bowring
S.
,
Kelemen
P.
,
Gordon
S.
,
Miller
R.
and
Dudás
F.
2013
.
Tectonic development of the Samail ophiolite: high-precision U-Pb zircon geochronology and Sm-Nd isotopic constraints on crustal growth and emplacement
.
Journal of Geophysical Research: Solid Earth
 ,
118
,
2085
2101
,
127.
Rioux
M.
,
Garber
J.
,
Bauer
A.
,
Bowring
S.
,
Searle
M.P.
,
Kelemen
P.
and
Hacker
B.
2016
.
Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: new constraints on the tectonic evolution during ophiolite formation from high-precision U-Pb zircon geochronology
.
Earth and Planetary Science Letters
 ,
451
,
185
195
,
128.
Robertson
A.H.F.
and
Searle
M.P.
1990
.
The northern Oman Tethyan continental margin: stratigraphy, structure, concepts and controversies
.
Geological Society, London, Special Publications
 ,
49
,
3
25
.
129.
Robertson
A.H.F.
,
Searle
M.P.
and
Ries
A.C.
1990
.
The Geology and Tectonics of the Oman Regions
 .
Geological Society, London, Special Publications
,
49
.
130.
Rodgers
D.W.
and
Gunatilaka
A.
2002
.
Bajada formation by monsoonal erosion of a subaerial forebulge, Sultanate of Oman
.
Sedimentary Geology
 ,
154
,
127
146
,
131.
Roger
J.
,
Béchennec
F.
,
Janjou
D.
,
Le Métour
J.
,
Wyns
R.
and
Beurrier
M.
1991
.
Geological map of Ja'alan, sheet NF 40-08E, scale:100,000, with Explanatory Notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
132.
Rollinson
H.
2017
.
Masirah – The other Oman ophiolite: a better analogue for mid-ocean ridge processes?
Geoscience Frontiers
 ,
8
,
1253
1262
,
133.
Rollinson
H.R.
,
Searle
M.P.
,
Abbasi
I.A.
,
Al-Lazki
A.I.
and
Al Kindi
M.H.
2014
.
Tectonic Evolution of the Oman Mountains
.
Geological Society, London, Special Publications
 ,
392
.
134.
Saddiqi
O.
,
Michard
A.
,
Goffé
B.
,
Poupeau
G.
and
Oberhänsli
R.
2006
.
Fission-track thermochronology of the Oman Mountains continental widows, and current problems of tectonic interpretation
.
Bulletin de la Société Géologique de France
 ,
177
,
127
134
,
135.
Scharf
A.
,
Mattern
F.
et al
2021a
.
Tectonostratigraphy of the eastern part of the Oman Mountains
.
Geological Society, London, Memoirs
 ,
54
,
11
47
,
136.
Scharf
A.
,
Mattern
F.
et al
2021b
.
Thrusts, extensional faults and fold patterns of the major units
.
Geological Society, London, Memoirs
 ,
54
,
49
60
,
137.
Scharf
A.
,
Mattern
F.
et al
2021c
.
Large-scale structure of the study area
.
Geological Society, London, Memoirs
 ,
54
,
61
66
,
138.
Scharf
A.
,
Mattern
F.
et al
2021d
.
Tectonic evolution of the Oman Mountains
.
Geological Society, London, Memoirs
 ,
54
,
67
104
,
139.
Scharf
A.
,
Mattern
F.
et al
2021e
.
Conclusions, differences between the Jabal Akhdar and Saih Hatat domes and unanswered questions
.
Geological Society, London, Memoirs
 ,
54
,
105
111
,
140.
Scharf
A.
,
Mattern
F.
et al
2021f
.
Appendices to: The Geology and Tectonics of the Jabal Akhdar and Saih Hatat Domes, Oman Mountains
.
Geological Society, London, Memoirs
 ,
54
,
113
116
,
141.
Schreurs
G.
and
Immenhauser
A.
1999
.
West-northwest directed obduction of the Batain Group on the eastern Oman continental margin at the Cretaceous-Tertiary boundary
.
Tectonics
 ,
18
,
148
160
,
142.
Searle
M.P.
2007
.
Structural geometry, style and timing of deformation in the Hawasina Window, Al Jabal al Akhdar and Saih Hatat culminations, Oman Mountains
.
GeoArabia
 ,
12
,
99
130
.
143.
Searle
M.P.
2019
.
Geology of the Oman Mountains, Eastern Arabia
 .
Springer
.
144.
Searle
M.P.
and
Cox
J.S.
1999
.
Tectonic setting, origin and obduction of the Oman ophiolite
.
Geological Society of America Bulletin
 ,
111
,
104
122
,
145.
Searle
M.P.
and
Cox
J.S.
2002
.
Subduction zone metamorphism during formation and emplacement of the Semail Ophiolite in the Oman Mountains
.
Geological Magazine
 ,
139
,
241
255
,
146.
Searle
M.P.
and
Malpas
J.
1980
.
Structure and metamorphism of rocks beneath the Semail ophiolite of Oman and their significance in ophiolite obduction
.
Earth and Environmental Science, Transactions of the Royal Society of Edinburgh
 ,
71
,
247
262
,
147.
Searle
M.P.
,
Waters
D.J.
,
Martin
H.N.
and
Rex
D.C.
1994
.
Structure and metamorphism of blueschist – eclogite facies rocks from the northeastern Oman Mountains
.
Journal of Geological Society, London
 ,
151
,
555
576
,
148.
Searle
M.P.
,
Warren
C.J.
,
Waters
D.J.
and
Parrish
R.R.
2004
.
Structural evolution, metamorphism and restoration of the Arabian continental margin, Saih Hatat region, Oman Mountains
.
Journal of Structural Geology
 ,
26
,
451
473
,
149.
Sella
G.F.
,
Dixon
T.H.
and
Mao
A.
2002
.
Revel: a model for Recent plate velocities from space geodesy
.
Journal of Geophysical Research
 ,
107
,
2018
,
150.
Shackleton
R.M.
and
Ries
A.C.
1990
.
Tectonics of the Masirah fault zone and eastern Oman
.
Geological Society, London, Special Publications
 ,
49
,
715
724
.
151.
Shackleton
R.M.
,
Ries
A.C.
,
Bird
P.R.
,
Filbrandt
J.B.
,
Lee
C.W.
and
Cunningham
C.C.
1990
.
The Batain mélange of NE Oman
.
Geological Society, London, Special Publications
 ,
49
,
673
696
.
152.
Sharland
P.R.
,
Casey
D.M.
,
Davies
R.B.
,
Simmons
M.D.
and
Sutcliffe
O.E.
2004
.
Arabian Plate Sequence Stratigraphy – revisions to SP2
.
GeoArabia
 ,
9
,
199
214
.
153.
Skelton
P.W.
,
Nolan
S.C.
and
Scott
R.W.
1990
.
The Maastrichtian transgression onto the northwestern flank of the Proto-Oman Mountains: sequences of rudist-bearing beach to open shelf facies
.
Geological Society, London, Special Publications
 ,
49
,
521
547
.
154.
Smewing
J.D.
,
Abbotts
I.L.
,
Dunne
L.A.
and
Rex
D.C.
1991
.
Formation and emplacement ages of the Masirah ophiolite, Sultanate of Oman
.
Geology
 ,
19
,
453
456
,
155.
Soret
M.
,
Agard
P.
,
Dubacq
B.
,
Plunder
A.
and
Yamato
P.
2017
.
Petrological evidence for stepwise accretion of metamorphic soles during subduction infancy (Semail ophiolite, Oman and UAE)
.
Journal of Metamorphic Geology
 ,
35
,
1051
1080
,
156.
Stampfli
G.M.
and
Borel
G.D.
2002
.
A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons
.
Earth and Planetary Science Letters
 ,
196
,
17
33
,
157.
Stampfli
G.M.
and
Kozur
H.W.
2006
.
Europe from the Variscan to the Alpine cycles
.
Geological Society, London, Memoirs
 ,
32
,
57
82
,
158.
Stern
R.J.
1994
.
Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland
.
Annual Reviews Earth and Planetary Science
 ,
22
,
319
351
,
159.
Svendsen
N.B.
2004
.
The Sahmah Formation of Oman: exploration implications for the Rub’ Al-Khali Basin
.
GeoArabia
 ,
9
,
119
136
.
160.
van Buchem
F.S.P.
,
Razin
P.
,
Homewood
P.W.
,
Oterdoom
W.H.
and
Philip
J.
2002
.
Stratigraphic organization of carbonate ramps and organic-rich intrashelf basins: Natih Formation (middle Cretaceous) of northern Oman
.
American Association of Petroleum Geologists Bulletin
 ,
86
,
21
53
.
161.
van Hinsbergen
D.J.J.
,
Maffione
M.
,
Koornneef
L.M.T.
and
Guilmette
C.
2019
.
Kinematic and paleomagnetic restoration of the Semail ophiolite (Oman) reveals subduction initiation along an ancient Neotethyan fracture zone
.
Earth and Planetary Science Letters
 ,
518
,
183
196
,
162.
Vernant
P.
,
Nilforoushan
F.
et al
2004
.
Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman
.
Geophysical Journal International
 ,
157
,
381
398
,
163.
Vigny
C.
,
Huchon
P.
,
Ruegg
J.-C.
,
Khanbari
K.
and
Asfaw
L.M.
2006
.
Confirmation of Arabia plate slow motion by new GPS data in Yemen
.
Journal of Geophysical Research
 ,
111
,
B02402
,
164.
Villey
M.
,
Béchennec
F.
,
Beurrier
M.
,
Le Métour
J.
and
Rabu
D.
1986a
.
Geological map of Yanqul, sheet NF 40-2C, scale: 1:100,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
165.
Villey
M.
,
de Gramont
X.
and
Le Métour
J.
1986b
.
Geological map of Seeb, sheet NF 40-3C, scale: 1:100,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
166.
Villey
M.
,
Le Métour
J.
and
de Gramont
X.
1986c
.
Geological map of Fanjah, sheet NF 40-3F, scale: 1:100,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.
167.
Walley
C.D.
1998
.
Some outstanding issues in the geology of Lebanon and their importance in the tectonic evolution of the Levantine region
.
Tectonophysics
 ,
298
,
37
62
,
168.
Warren
C.J.
,
Parrish
R.R.
,
Searle
M.P.
and
Waters
D.J.
2003
.
Dating the subduction of the Arabian continental margin beneath the Semail Ophiolite
.
Geology
 ,
31
,
889
892
,
169.
Warren
C.J.
,
Parrish
R.R.
,
Waters
D.J.
and
Searle
M.P.
2005
.
Dating the geologic history of Oman's Semail ophiolite: insight from U-Pb geochronology
.
Contributions to Mineralogy and Petrology
 ,
150
,
403
422
,
170.
Wyns
R.
,
Béchennec
F.
,
Le Métour
J.
and
Roger
J.
1992
.
Geological map of Tiwi, sheet NF40-8B, scale 1:100,000, with Explanatory notes
 .
Directorate General of Minerals, Oman Ministry of Petroleum and Minerals
.

Related

Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal