Skip to Main Content
Skip Nav Destination


Subaqueous mass-transport deposits (MTDs) can be important elements in hydrocarbon systems, forming potential reservoirs or seals. Most research has targeted outcrops or moderately to deeply buried MTDs and, therefore, the petrophysical properties of near-seafloor MTDs, and their influence in the trapping and release of shallow fluids, is poorly studied. Here, we investigate shallow MTDs in Lake Villarrica (Chile) by combining sub-bottom profiles, free-fall penetrometer data, pore pressure dissipation tests and geotechnical properties of sediment cores. Low undrained shear strength under a surficial MTD indicates underconsolidation caused by sudden loading and rapid sealing. Larger, buried MTDs show acoustic signatures of free gas at their base, indicating effective sealing. This is supported by degassing core gaps just below MTDs and by excess pore pressure ratios c. 30–70% within MTDs. Acoustic windows below rafted blocks suggest local fluid escape. MTDs exhibit elevated undrained shear strength and reduced porosity compared to surrounding sediments, but are comparable to upslope source sequences. This suggests that MTD sealing capacity in Villarrica relates to the apparently overconsolidated nature of the slope sequence, leaving a minor role for shear densification. This study shows that shallow MTDs can form a relatively rapid seal for fluid migration, locally degraded by rafted blocks.

You do not currently have access to this chapter.

Figures & Tables





Citing Books via

Close Modal

or Create an Account

Close Modal
Close Modal