Post-Archean Granitic Rocks: Petrogenetic Processes and Tectonic Environments
CONTAINS OPEN ACCESS

Granites (sensu lato) represent the dominant rock-type forming the upper–middle continental crust but their origin remains a matter of long-standing controversy. The granites may result from fractionation of mantle-derived basaltic magmas, or partial melting of different crustal protoliths at contrasting P–T conditions, either water-fluxed or fluid-absent. Consequently, many different mechanisms have been proposed to explain the compositional variability of granites ranging from whole igneous suites down to mineral scale. This book presents an overview of the state of the art, and envisages future avenues towards a better understanding of granite petrogenesis. The volume focuses on the following topics:
compositional variability of granitic rocks generated in contrasting geodynamic settings during the Proterozoic to Phanerozoic Periods;
main permissible mechanisms producing subduction-related granites;
crustal anatexis of different protoliths and the role of water in granite petrogenesis; and
new theoretical and analytical tools available for modelling whole-rock geochemistry in order to decipher the sources and evolution of granitic suites.
A phase equilibrium investigation of selected source controls on the composition of melt batches generated by sequential melting of an average metapelite
-
Published:April 21, 2020
-
CiteCitation
Matthew J. Mayne, Gary Stevens, Jean-François Moyen, 2020. "A phase equilibrium investigation of selected source controls on the composition of melt batches generated by sequential melting of an average metapelite", Post-Archean Granitic Rocks: Petrogenetic Processes and Tectonic Environments, V. Janoušek, B. Bonin, W. J. Collins, F. Farina, P. Bowden
Download citation file:
- Share
-
Tools
Abstract
The ability of Rcrust software to conduct path-dependent phase equilibrium modelling with automated changing bulk compositions allows for a phase equilibrium approach to investigate an array of source controls for their effect on the bulk compositions of melts produced by sequential melting events. The following source controls of the rock system are considered: (1) initial magnesium and iron content; (2) initial sodium and calcium content; (3) pressure–temperature path followed by the system; and (4) threshold by which melt extractions in the system are triggered. These source controls are investigated in a water-restricted system and a water-in-excess system. The permutation...