3D numerical modelling of the Wilson cycle: structural inheritance of alternating subduction polarity
-
Published:November 11, 2019
-
CiteCitation
Stéphane J. Beaussier, Taras V. Gerya, Jean-Pierre Burg, 2019. "3D numerical modelling of the Wilson cycle: structural inheritance of alternating subduction polarity", Fifty Years of the Wilson Cycle Concept in Plate Tectonics, R. W. Wilson, G. A. Houseman, K. J. W. McCaffrey, A. G. Doré, S. J. H. Buiter
Download citation file:
Close - Share
-
Tools
Abstract
Alternating subduction polarity along suture zones has been documented in several orogenic systems. Yet the mechanisms leading to this geometric inversion and the subsequent interplay between the contra-dipping slabs have been little studied. To explore such mechanisms, 3D numerical modelling of the Wilson cycle was conducted from continental rifting, breakup and oceanic spreading to convergence and self-consistent subduction initiation. In the resulting models, near-ridge subduction initiating with the formation of contra-dipping slab segments is an intrinsically 3D process controlled by earlier convergence-induced ridge swelling. The width of the slab segments is delimited by transform faults inherited from the rifting and ocean floor spreading stages. The models show that the number of contra-dipping slab segments depends mainly on the size of the oceanic basin, the asymmetry of the ridge and variations in kinematic inversion from divergence to convergence. Convergence velocity has been identified as a second-order parameter. The geometry of the linking zone between contra-dipping slab segments varies between two end-members governed by the lateral coupling between the adjacent slab segments: (1) coupled slabs generate wide, arcuate linking zones holding two-sided subduction; and (2) decoupled slabs generate narrow transform fault zones against which one-sided, contra-dipping slabs abut.
Figures & Tables
Contents
Fifty Years of the Wilson Cycle Concept in Plate Tectonics
CONTAINS OPEN ACCESS

Fifty years ago, Tuzo Wilson published his paper asking ‘Did the Atlantic close and then re-open?’. This led to the ‘Wilson Cycle’ concept in which the repeated opening and closing of ocean basins along old orogenic belts is a key process in the assembly and breakup of supercontinents. The Wilson Cycle underlies much of what we know about the geological evolution of the Earth and its lithosphere, and will no doubt continue to be developed as we gain more understanding of the physical processes that control mantle convection, plate tectonics, and as more data become available from currently less accessible regions.
This volume includes both thematic and review papers covering various aspects of the Wilson Cycle concept. Thematic sections include: (1) the Classic Wilson v. Supercontinent Cycles, (2) Mantle Dynamics in the Wilson Cycle, (3) Tectonic Inheritance in the Lithosphere, (4) Revisiting Tuzo's question on the Atlantic, (5) Opening and Closing of Oceans, and (6) Cratonic Basins and their place in the Wilson Cycle.