Skip to Main Content

Abstract

There is an emerging consensus that Earth's landmasses amalgamate quasi-periodically into supercontinents, interpreted to be rigid super-plates essentially lacking tectonically active inner boundaries and showing little internal lithosphere–mantle interactions. The formation and disruption of supercontinents have been linked to changes in sea-level, biogeochemical cycles, global climate change, continental margin sedimentation, large igneous provinces, deep mantle circulation, outer core dynamics and Earth's magnetic field. If these hypotheses are correct, long-term mantle dynamics and much of the geological record, including the distribution of natural resources, may be largely controlled by these cycles. Despite their potential importance, however, many of these proposed links are, to date, permissive rather than proven. Sufficient data are not yet available to verify or fully understand the implications of the supercontinent cycle. Recent advances in many fields of geoscience provide clear directions for investigating the supercontinent cycle hypothesis and its corollaries but they need to be vigorously pursued if these far-reaching ideas are to be substantiated.

You do not currently have access to this chapter.

Figures & Tables

Contents

GeoRef

References

Related

Citing Books via

Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal